Смекни!
smekni.com

Конструирование радиорелейной линии (стр. 8 из 10)

Компромиссным решением при построении широкополосных систем связи, предназначенных для работы на больших дальностях, является применение радиорелейных линий связи (РРЛ). Радиорелейные линии представляют собой цепочку ретрансляторов, обеспечивающих поочередную передачу радиосигналов между оконечными станциями. Различают два вида радиорелейных систем передачи (РРСП) – РРСП прямой видимости, станции которых размещаются на расстоянии прямой видимости, и тропосферные РРСП, использующие рассеяние и отражение радиоволн в нижних областях атмосферы при взаимном расположении станций далеко за пределами прямой видимости.

В РРСП прямой видимости для увеличения расстояния между станциями радиорелейных линий антенны ретрансляторов подвешивают на высокие сооружения (мачты, опоры, высотные строения и т.д.). В условиях равнинной местности высота поднятия антенн 60… 100 метров позволяют организовать уверенную связь на расстояниях 40… 60 километров.

Цепочку радиорелейной линии составляют радиорелейные станции трех типов: оконечные радиорелейные станции (ОРС), промежуточные радиорелейные станции (ПРС), узловые радиорелейные станции (УРС). Условная радиорелейная линия связи схематично представлена на рисунке 16.

Рис. 16 Радиорелейная линия связи

На оконечной радиорелейной станции начинается и заканчивается тракт передачи. Аппаратура ОРС осуществляет преобразование сигналов, поступающих от разных источников информации (телефонные сигналы от междугородней телефонной станции, телевизионные сигналы от междугородней телевизионной аппаратной и т.д.) в сигналы, передаваемые по радиорелейной линии, а также обратное преобразование сигналов, приходящих по РРЛ, в сигналы телерадиовещания или телефонии. Радиосигналы ОРС с помощью передающего устройства и антенны излучаются в направлении следующей, обычно промежуточной, радиорелейной станции.

Промежуточные радиорелейные станции предназначены для приема сигналов от предыдущей станции радиорелейной линии, усиления этих сигналов и излучения в направлении последующей станции РРЛ.

На каждой промежуточной радиорелейной станции установлены по две антенны, ориентированные на соседние РРСП. Каждая из антенн является приемопередающей, то есть используется и для приема, и для передачи сигналов. Одним из преимуществ работы радиорелейной линии связи в сверхвысокочастотном (СВЧ) диапазоне является возможность применения высоконаправленных антенн с малыми габаритами. Небольшие размеры антенн упрощают их установку на высоких сооружениях. Хорошие направленные свойства антенн СВЧ диапазона позволяют облегчить требования к характеристикам приемопередающего тракта.

Одна цепочка приемопередатчиков РРЛ образует СВЧ симплексный (т.е. предназначенный для передачи сигналов в одном направлении) ствол. Структура симплексного ствола с учетом плана распределения частот приведена на рисунке 17

Рис. 17 Распределение частот в символьном стволе радиорелейной линии

Два симплексных ствола, работающие во встречных направлениях, образуют дуплексный СВЧ ствол. Для передачи сигналов в обратном направлении может быть использована та же пара частот, что и в прямом направлении (двухчастотная система), либо другая пара частот (четырехчастотная система). Структурная схема одноствольной дуплексной промежуточной радиорелейной станции приведена на рисунке 18.

Рис. 18 Структурная схема дуплексной ПРС

Для увеличения пропускной способности радиорелейной линии на каждой радиорелейной станции устанавливают несколько комплектов приемопередающей аппаратуры, подключенных к общей антенне. Магистральные радиорелейные линии связи могут иметь до восьми дуплексных СВЧ стволов (из них 6…7 рабочих и 1…2 резервных).

Кроме ОРС и ПРС для ввода в радиорелейную линию дополнительных потоков информации и вывода из РРЛ части передаваемой информации используют узловые радиорелейные станции. В узловых радиорелейных станциях, как и в ОРС, имеется аппаратура преобразования телефонных, радио и телевизионных сигналов в сигналы, передаваемые по РРЛ, и аппаратура обратного преобразования. Кроме того, от узловых радиорелейных станций могут начинаться новые радиорелейные линии (ответвления).

При проектировании радиорелейных линий следует учитывать и возможные изменения условий распространения радиоволн. Так, при повышенной рефракции (искривление направления распространения радиоволн) сигналы могут распространяться далеко за горизонтом. Поэтому колебания, излучаемые радиорелейной станцией с частотой, например, f1, могут быть приняты не только соседней станцией, но и станцией, отстоящей от нее через три пролета. Но для последней станции это будет паразитным сигналом, так как она должна принимать сигналы только от ближайшей станции. Нежелательные сигналы от всех других станций будут вызывать ухудшение качества приема.

Для устранения подобных явлений ретрансляторы радиорелейной линии связи располагают не по прямой линии, а зигзагом, так, чтобы не совпадали главные направления соседних участков трассы, использующих одинаковые частоты. При этом используют направленные свойства антенн. Радиорелейные станции разносят от генерального направления радиорелейной линии связи таким образом, чтобы направлению на станцию, отстоящую через три пролета, соответствовали минимальные уровни диаграммы направленности антенны. На рисунке 19 показаны три пролета участка трассы РРЛ. На крайних пролетах используются одинаковые частоты. На такой трассе даже при сильной рефракции радиоволн сигналы от станций с номерами ПРСi и ПРСi+2 практически не влияют друг на друга. На рисунке заметно, что антенны практически не воспринимают радиоволны, приходящие с направления, лежащего на прямой, связывающей эти станции.

Рис. 19 Схема расположения ретрансляторов на трассе радиорелейной линии связи

Тропосферные радиорелейные системы передачи используют локальные объемные неоднородности атмосферы, вызываемыми различными физическими процессами, происходящими в околоземном пространстве. Эти неоднородности способны отражать и рассеивать электромагнитные колебания при их распространении в атмосфере. Поскольку неоднородности располагаются на значительной высоте, то и рассеиваемые ими радиоволны могут распространяться на большие расстояния, значительно превышающие расстояние прямой видимости.

В силу нерегулярной структуры неоднородностей тропосферы сигналы тропосферных линий подвержены глубоким замираниям. Это затрудняет передачу больших объемов информации с хорошим качеством. С учетом изложенных обстоятельств тропосферные радиорелейные линии связи оказывается выгодным строить в труднодоступных и удаленных районах при не слишком больших объемах передаваемой информации. На рисунке 20 показан участок трассы радиорелейной линии связи. При этом расстояния между станциями можно выбирать до нескольких сотен километров, а емкость систем связи может составлять десятки телефонных каналов.


Рис. 20 Участок трассы радиорелейной линии связи

3.3 Спецификация

Ниже описано оборудование применяемое при постороении РРЛ на участке Бузулук-Бугуруслан.

3.3.1 Антенна направленная параболическая ПАР-2

Антенна предназначена для приема и передачи широкополосных радиосигналов диапазона 2400–2500 МГц. Применяется для построения беспроводных радиосетей передачи данных на оборудовании Cisco Aironet, Revolution, Avaya Wireless и других стандарта IEEE802.11 и IEEE802.11b.

Особенно эффективна при построении ретрансляторов и дальних линков. Обеспечивает дальность связи без усилителей до 40 км.

Рис. 21 Антена ПАР2. Диаграмма направленности

Особое внимание при производстве антенн ПАР уделяется качеству применяемых материалов и изготовлению. Применение сетчатой конструкции отражателя с преимущественным ориентированием элементов излучения в одной плоскости позволило существенно ослабить кросполяризацию.

Технические характеристики

Коэффициент усиления 30 dBi

Соотношение мощности излучения в передней и задней полусферах 32 dBi

Ширина диаграммы направленности на уровне -3 dB 6 град.

Максимальная мощность До 25 Вт

Разъем N-типа, Male

Поляризация Линейная

Подавление кросполяризации 32 dB

Вес антенны с креплением 5,5 кг

Размер антенны 120х120 см

Атмосферо-устойчивое покрытие Порошковая эмаль

Максимальная скорость ветра 35 м/сек

Диаметр мачты для установки 28–45 мм.

3.3.2 Модем

Рис. 22 Модем МД-8

МД-8 – Цифровой модем производства Радиан.

Функциональные характеристики:

Модем МД-8 стыкуется по ПЧ 70 МГц с любым типом радиорелейного оборудования (КУРС, КОМПЛЕКС, ГТТ, ФМ и др.)

Технические характеристики:

Скорость цифрового потока – 8448 кбит/с.

Для передачи входного и выходного цифрового потока используется код НDВ-3. Вход и выход потока несимметричный (75 Ом). Стык соответствует рекомендации G703 МСЭ-Т. Вид модуляции ЧМ.

Напряжение сигнала ПЧ на выходе аппаратуры: 500± 50 мВ

Спектр занимаемых частот по уровню минус 30 дБ: (70 ± 8,5) МГц

Номинальное напряжение сигнала ПЧ на входе аппаратуры: 75…750 мВ