регистрация /  вход

Частотные и переходные характеристики систем авторегулирования (стр. 1 из 2)

Введение

Радиопередающие устройства (РПдУ) применяются в сферах телекоммуникации, телевизионного и радиовещания, радиолокации, радионавигации. Стремительное развитие микроэлектроники, аналоговой и цифровой микросхемотехники, микропроцессорной и компьютерной техники оказывает существенное влияние на развитие радиопередающей техники как с точки зрения резкого увеличения функциональных возможностей, так и с точки зрения улучшения ее эксплуатационных показателей. Это достигается за счет использования новых принципов построения структурных схем передатчиков и схемотехнической реализации отдельных их узлов, реализующих цифровые способы формирования, обработки и преобразования колебаний и сигналов, имеющих различные частоты и уровни мощности.

1. Частотные и переходные характеристики систем авторегулирования

Частотная и переходная характеристики замкнутой системы являются показателями качества при гармоническом и скачкообразном воздействиях. Если задающее воздействие гармоническое:

x з (t ) = A coswt ,

то выходной процесс линейной системы тоже гармонический:

y (t ) = AK з (w)cos(wt + jз (w)),

где Кз (w) и jз (w), соответственно, - АЧХ и ФЧХ замкнутой системы.

d(t ) = x з (t ) – y (t ) = A coswt AK з (w)cos(wt + jз (w))

будет равна нулю только при Кз (w) = 1 и jз (w) = 0. Это требование к идеальной частотной характеристике замкнутой системы. Если все составляющие спектра задающего воздействия попадают в область частот, где частотная характеристика идеальна, то воздействие отрабатывается без ошибки. В противном случае возникает динамическая ошибка.Для оценки качества регулирования по АЧХ замкнутой системы используется показатель колебательности М = К макс /К з (0) (см. рис. 1). Обычно величина показателя колебательности меньше 2.

Рис.1


Так как АЧХ будет близка к 1, если К р (w)>>1, независимо от вида частотной характеристики разомкнутой системы в этой области частот.

Для примера рассмотрим системы авторегулирования разного типа: статическую и астатические первого и второго порядка, передаточные функции которых описываются выражениями:

,

,
.(1)

Рис.

Их логарифмические амплитудные характеристики, как видно из рис. 2, значительно отличаются в области нижних и верхних частот. Однако если запасы устойчивости в этих системах одинаковы, то различие в амплитудно-частотных характеристиках замкнутых систем невелико (см. рис. 3). Запас устойчивости по фазе для каждой из этих систем определяется выражениями:

Δφ 1 = 180 – arctg10ωср T 1 – arctgωср Т 1 ,

Δφ 2 = 90 – arctgωср T 2 , (2)

Δφ 3 = arctgωср Т 3 .


По форме АЧХ можно судить о переходной характеристике системы. Так, если АЧХ будет монотонной, то и переходная характеристика монотонна, если в АЧХ будет подъем в области верхних частот, то переходная характеристика будет колебательной.

Переходная характеристика является показателем качества при быстро изменяющемся воздействии. Для систем авторегулирования лучшей считается колебательная переходная характеристика с быстрым затуханием колебаний на вершине (рис. 4).

Рис.

Обычно используются следующие числовые параметры переходной характеристики:

время достижения первого максимума tm ,

время регулирования t рег ,

период колебаний на вершине Т в ,

перерегулирование Δhm /h уст .


Рис.

Так как частотная характеристика замкнутой системы однозначно связана с ЛАХ и ЛФХ разомкнутой системы, то можно установить связь, по крайней мере, качественную, между логарифмическими частотными характеристиками разомкнутой системы и параметрами переходной характеристики замкнутой системы. Так, чем меньше запас устойчивости по фазе, тем больше перерегулирование и медленнее затухание колебаний на вершине. Существует следующая приближенная связь между запасом устойчивости по фазе и перерегулированием:

Δhm (в %) = 70 – Δφ (в град)

при условии, что запас устойчивости по фазе 300 < Dj < 700 .

Временные параметры переходной характеристики связаны с частотой среза wср .. Чем больше частота среза, тем шире полоса пропускания замкнутой системы и меньше все временные параметры.

Как правило, системы, обладающие удовлетворительным качеством регулирования, имеют запас устойчивости по фазе от 30 до 700 . Как можно обеспечить такой запас устойчивости по фазе? Если ЛАХ пересекает ось частот под наклоном -20 дБ/дек. и длина участка с таким наклоном достаточно велика, то запас устойчивости по фазе близок к 900 . Такую связь можно установить, например, по логарифмическим частотным характеристикам интегрирующего звена. Во всем диапазоне частот его ЛАХ идет под наклоном –20 дБ/дек., а фазовый сдвиг равен –900 . Если же ЛАХ пересекает ось частот под наклоном –40 дБ/дек. и длина участка с таким наклоном достаточно велика, то запас устойчивости по фазе близок к нулю. Поэтому такой наклон ЛАХ при пересечении оси частот нежелателен.

Наиболее легко обеспечиваются приемлемые запасы устойчивости по фазе, если ЛАХ разомкнутой системы пересекает ось частот под наклоном –20 дБ/дек. и длина участка с таким наклоном составляет около 1,5 декады. С этим участком сопрягаются участки ЛАХ с наклонами –40 или –60 дБ/дек. Можно выделить 4 типа ЛАХ в окрестности частоты среза, отличающиеся наклонами: 1) -40, -20, -40; 2) -40, -20, -60; 3) -60, -20, -40; 4) -60, -20, -60. Если ЛАХ продлить в области нижних и верхних частот без изменения наклона, то передаточная функция разомкнутой системы для каждого из этих типов ЛАХ запишется, соответственно:

,
,
(3)
,
,

где Т 1 = 1/ω1 , Т 2 = 1/ω2 , К = 10L /20 , L – значение ЛАХ на частоте ω1 .

Запас устойчивости по фазе зависит как от длины участка с наклоном –20 дБ/дек., так и от соотношения сопрягающих частот ω1 и ω2 и частоты среза ωср , а также от типа ЛАХ. Для соответствующего типа ЛАХ он определяется выражениями:

Δφ 1 = arctgωср T 1 – arctgωср Т 2 ,

Δφ 2 = arctgωср Т 1 – 2arctgωср Т 2 , (4)

Δφ 3 = -900 + 2arctgωср Т 1 – arctgωср Т 2 ,

Δφ 4 = -900 + 2arctgωср Т 1 – 2arctgωср Т 2 .


Сравним запасы устойчивости по фазе для первого и четвертого типов ЛАХ при одинаковой длительности участка с наклоном –20 дБ/дек., равном 1,5 декады (см. рис. 5). ЛФХ, соответствующая ЛАХ первого типа, получается сложением ЛФХ двух интегрирующих звеньев, форсирующего звена с постоянной времени Т 1 и инерционного звена с постоянной времени Т 2 . ЛФХ, соответствующая ЛАХ четвертого типа, получается сложением ЛФХ трех интегрирующих звеньев, двух форсирующих и двух инерционных звеньев.

Рис.

Видим, что с увеличением наклонов участков ЛАХ, сопрягаемых с участком с наклоном –20 дБ/дек., запас устойчивости по фазе становится меньше. Заметим также, что запас устойчивости по фазе уменьшается с приближением wср к w1 или w2 . Для удобства сравнения процессов в системах, отличающихся друг от друга или передаточными функциями, или параметрами исследование проводится одновременно на трех моделях. Эти модели в изображении VisSim приведены на рис. 6.


Рис.

Каждая содержит три линейных звена, задаваемых передаточными функциями. При моделировании статической и астатических систем первого и второго порядка используются только два звена. При этом передаточные функции (6) целесообразно представить в виде произведения передаточных функций отдельных звеньев:

2. Построение логарифмических частотных характеристик

Логарифмические частотные характеристики можно определить, прологарифмировав комплексную частотную характеристику:

lnK (j w) = ln{K (w)Exp(j j(w))} = lnK (w) + j j(w).

Действительная часть полученного выражения является логарифмической АЧХ, а мнимая – логарифмической ФЧХ. Определенная таким образом логарифмическая АЧХ измеряется в неперах. Обычно используется другая единица измерения – децибел, и ЛАХ определяется как L (w) = 20lgK (w).

Главное достоинство логарифмических частотных характеристик проявляется при построении частотных характеристик последовательного соединения звеньев, так как логарифмические частотные характеристики складываются.