регистрация /  вход

Рост пленки на подложке (стр. 1 из 3)

Министерство общего и профессионального образования Российской Федерации

Марийский государственный технический университет

Кафедра конструирования и производства радиоаппаратуры

Рост плёнки на подложке

(реферат)

Выполнил: ст. группы ЭВС–31

Фокин С.В.

Проверил: к.т.н., доцент Сушенцов Н.И.

г. Йошкар-Ола

2004 г

Содержание

Четыре стадии роста пленки

Зарождение частиц новой фазы

Коалесценция островков

Образование каналов

Образование сплошной пленки

Список литературы


Четыре стадии роста пленки

Как следует из теории зародышеобразования и электронно-микроскопических наблюдений, последовательность этапов образования зародышей и роста пленки вплоть до образования непрерывной пленки такова:

1. Образование адсорбированных атомов.

2. Образование субкритических эмбрионов разного размера.

3. Образование зародышей критического размера (этап зародышеобразования).

4. Рост этих зародышей до сверхкритических размеров с результирующим обеднением адатомами зон захвата вокруг зародышей.

5. Конкурирующим процессом на этапе 4 является образование критических зародышей на площадях, не обедненных адатомами.

6. Зародыши соприкасаются друг с другом и срастаются, с тем чтобы образовать новый островок, занимающий площадь меньше, чем сумма площадей двух начальных зародышей; это приводит к увеличению свободной поверхности подложки.

7. Атомы адсорбируются на этих вновь освободившихся участках, и наступает процесс «вторичного» образования зародышей.

8. Большие островки срастаются, оставляя каналы или полости на подложке.

9. Каналы и полости заполняются в результате вторичного зародышеобразования и в конце концов образуется непрерывная пленка.

Некоторые из этих этапов схематически показаны на рис. 1 Различают четыре стадии процесса роста: зарождение частиц новой фазы (зародышей) и островковой структуры, срастание или коалесценция островков, образование каналов, образование непрерывной пленки. Ниже эти стадии будут обсуждаться очень подробно, в основном, на основании электронно-микроскопических исследований.[1]

Рис. 1. Схема стадий роста пленки.

Зарождение частиц новой фазы

На этом этапе происходит столкновение атомов из газовой фазы с поверхностью подложки, после чего атомы могут прочно закрепиться на подложке, либо через некоторое время реиспариться, либо упруго отразиться от поверхности. Схема возможных процессов на поверхности подложки представлена на рис.2.

Взаимодействие с дефектами подложки Поверхностная диффузия Химическое связывание, зародышеобразование Объемная диффузия

Рис. 2 Схема возможных процессов на поверхности подложки


Вероятность упругого отражения может быть оценена как:

(1)

где Ek - кинетическая энергия атома падающего на подложку; Ed - энергия десорбированного атома до установления термодинамического равновесия с подложкой; Et - энергия десорбированного атома после установления равновесия с подложкой.

Величина a i может быть приближенно определена из решения уравнения Шредингера для случая столкновения налетающего атома с одномерной полубесконечной цепью упруго связанных атомов подложки. Решение этого уравнения показало, что отражением падающих частиц можно пренебречь, если их энергия меньше, чем 25 Eд, где Eд - потенциальная энергия десорбции, что справедливо практически при всех методах получения пленок (для металлов, например, Eд » 1 эВ, т.е. Ek должна быть не более 25 эВ). Кроме того, вероятность полной термической аккомодации (at = 1) увеличивается при увеличении отношения масс падающего атома и атома подложки. На основе той же модели было показано, что время релаксации энергии ~ 2/n , где n - частота колебаний атомов подложки (n ~ 1011 - 1013 с-1). Таким образом, можно принять, что установление термодинамического равновесия атомов с подложкой происходит мгновенно.

Адсорбированные атомы могут двигаться по поверхности (поверхностная диффузия) и при столкновении образовывать более устойчивые образования, - начальные зародыши. Диффузия зародышей по поверхности, как правило, на много порядков меньше диффузии отдельных атомов и уменьшается по мере роста размеров зародыша. Поэтому считается, что зародыши на поверхности неподвижны. При достижении зародышами определенного размера gкр (см. рис.3) соответствующего максимуму свободной энергии образования зародыша, он уже не распадается на отельные атомы, а растет, образуя устойчивый конденсат.[2]

Рис.3 Изменение термодинамического потенциала от количества атомов g в зародыше.

Современные теоретические представления описывают три возможных режима роста тонких пленок после образования начальных устойчивых зародышей: послойный, островковый и смешанный. Реализация в конкретной системе того или иного механизма роста определяется соотношением удельных свободных энергий границ раздела "пар-конденсат" (

), "конденсат-подложка" (
) и поверхности подложки (
).

В случае

+
<=
происходит послойный рост, т.е. последовательное заполнение подложки моно атомными слоями. При этом необходимо, чтобы указанное условие удовлетворялось после образования первого слоя (т.е. когда
свободная энергия поверхности пленки). При
+
>
происходит островковый рост. В этом случае связь атомов в островках больше чем с атомами поверхности подложки, что приводит к преимущественному росту островков вверх. Процессам послойного и островкового роста можно дать простую физическую интерпретацию. В первом случае происходит полное смачивание поверхности присоединение адатомов к боковым граням зародыша термодинамически предпочтительнее вплоть до полного заполнения первого слоя. Во втором случае зародышу выгодно собраться в каплю, угол смачивания или контактный угол
определяется из условия Гиббса:
=
+
·
. В процессе роста условия хорошего смачивания могут нарушаться и тогда произойдет смена послойного режима на островковый (режим Странского-Крастанова). Причиной, нарушающей монотонное уменьшение (
+
) с ростом объема пленки может быть структурное рассогласование материала пленки и подложки.

Процесс образования и эволюции зародышей изучается теориями конденсации. В первом приближении эти теории могут быть разделены на три группы: теории, основанные на классическом подходе, статистические методы и теории основанные на различных неклассических представлениях. В кратком обзоре остановимся только на классической теории, т.к. именно на ее основе в настоящее время развиты представления об эволюционных процессах на начальных стадиях и с точки зрения классического подхода будут рассмотрены процессы роста многокомпонентных пленок в системе Y-Ba-Cu-O.

В основе классического подхода лежит положение Гиббса о том, что движущей силой любого процесса является разность термодинамических потенциалов системы начального и конечного состояний. Она определяется термодинамическими параметрами, характеризующими большие области рассматриваемых фаз. Малые флуктуации относительно исходного состояния могут приводить к увеличению или уменьшению термодинамического потенциала системы и, соответственно, к понижению или повышению ее стабильности.

Классическая теория зародышеобразования оперирует такими флуктуациями, которые могут приводить к радикальным атомным перегруппировкам в пределах малых локальных объемов. Это положение соответствует многочисленным экспериментальным данным, показывающим, что большинство поверхностных превращений являются гетерогенными, т.е. на промежуточном этапе возможно сосуществование локальных областей с различным фазовым составом. Т.е. на начальном этапе можно определить области, где превращения уже произошли, - образовались зародыши новой фазы. Два фактора определяют понятие критического зародыша. С одной стороны, образование новой, более стабильной фазы ведет к снижению термодинамического потенциала системы, с другой стороны появление межфазной границы ведет к его повышению. Максимальное значение термодинамического потенциала определяет минимальный размер критического зародыша и энергетический барьер зародышеобразования.