Смекни!
smekni.com

Нелинейные эффекты вынужденного неупругого рассеивания световой волны в волокне (стр. 2 из 2)

Одним из важных отличительных свойств SRS является большой частотный диапазон взаимодействия проходящего излучения с молекулами и атомами вещества. Для кварца он достигает десятков терагерц.

Поэтому можно сделать вывод, что SRS является частотно зависимым и проявляется более выражено на коротких волнах в сравнении с длинноволновыми (на более высоких частотах). Так, на рисунке 6 представлен типовой спектр 6-ти канальной DWDM системы (1550 нм) на входе ВОЛС, а на рисунке 7 иллюстрирует эффект SRS. Можно видеть, что коротковолновые каналы имеют много меньшую амплитуду в сравнении с длинноволновыми каналами, то есть наблюдается изменение амплитуд сигналов по каждому из каналов. При этом большему затуханию подвержены именно более коротковолновые (высокочастотные) каналы.

Рисунок 6 - Спектр 6-ти канальной DWDM системы


Рисунок 7 - Изменение амплитуд сигналов по каналам из-за SRS

Явления SBS и SRS проявляются в том, что оптический сигнал рассеивается и смещается в область более длинных волн (рисунок 8). Если при SBS спектр стимулированного излучения узкий (30… 60 МГц) и смещен в длинноволновую сторону на 10…11 ГГц, то при SRS спектр стимулированного излучения широкий (~7 ТГц или 55 нм) и смещен в длинноволновую сторону на величину порядка 10…13 ТГц.

Рисунок 8 – Смещение спектра при SBS и SRS

При схожести SBS и SRS, можно выделить несколько существенных отличий:

• SBS наблюдается только для встречной волны (рассеяние происходит только назад, по направлению к источнику сигнала). SRS же наблюдается как для встречных волн (Стоксово излучение с уровнем порядка -50…-60 дБ относительно интенсивности исходного излучения), так и для сонаправленных волн (антистоксово излучение с уровнем порядка -70…-80 дБ относительно основной волны). Стоксовая и антистоксовая волны располагаются частотно симметрично относительно основной передаваемой частоты излучения.

• При SRS спектр стимулированного излучения смещен относительно сильнее (разница примерно на три порядка), а ширина его намного больше (примерно на три порядка), чем при SBS.

• Пороговая мощность SRS намного больше (примерно на три порядка), чем SBS.

Формула для расчета минимального значения пороговой мощности SRS PSRS записывается в виде:

(6)

где KSRS – числовое значение, зависящее как от поляризационного состояния волны, так и еще от ряда факторов. Минимальное значение составляет 1. Типовое значение для большинства практических приложений KSRS= 2;

gR≈4,2*10-14 м/Вт – SRS усилительный коэффициент;

Аэфф - эффективная площадь ядра ОВ в м 2;

L эфф – эффективная длина ОВ.

Для современных ОВ порог SRS немногим превышает величину 30 дБм (1 Вт). В логарифмическом виде порог SRS удобно записать в виде:

(7)

где Dэфф – эффективный диаметр ОВ (при водится в справочных параметрах).

Таким образом, SRS, в отличие от SBS не ограничивает величину оптической мощности, вводимой в волокно. Порог SRS для системы PSRS.N, состоящей из N оптических усилителей, определяется простой зависимостью:

(8)

где N – число оптических каналов.

Так, даже при использовании широкополосного оптического усилителя с Рвых=26 дБм в системе с 8-ю каналами, максимальная спектральная оптическая мощность, приходящаяся на канал, составит только 17 дБм.

Тем не менее, при некоторой мощности исходного излучения возникают условия, когда на выходе световода вся энергия переходит в стоксову компоненту. Причём, рассеяние имеет преимущественное направление, совпадающее с направлением исходного излучения. Это явление играет важную роль в оптических системах, так как обеспечивает возможность усиления сигналов в широкой полосе частот.

Исследования показывают, что с одной стороны системные проектировщики стандартных ВОСП должны предпринимать меры по минимизации нежелательных эффектов нелинейности, с другой стороны отдельные нелинейные эффекты можно использовать для усиления оптических волн, для создания новой сущности - оптического солитона, обеспечивающего увеличение дальности неискаженного распространения светового импульса и высокоскоростную оптическую коммутацию.