регистрация /  вход

Направляющие системы передачи ВОЛС (стр. 1 из 3)

НАПРАВЛЯЮЩИе СИСТЕМы ПЕРЕДАЧИ ВОЛС


1. ПРЕИМУЩЕСТВА ВОЛС ПЕРЕД ДРУГИМИ НАПРАВЛЯЮЩИМИ СИСТЕМАМИ ПЕРЕДАЧИ

Оптическое волокно в настоящее время считается самой совершенной физической средой для передачи информации, а также самой перспективной средой для передачи больших потоков информации на значительные расстояния. Основанием для такого заключения является ряд особенностей, присущих оптическим волокнам.

Физические особенности:

1. Стекловолокно обладает значительной широкополосностью, которая обусловлена чрезвычайно высокой частотой несущей 1014 Гц. Это означает, что по оптическим линиям связи можно передавать информацию со скоростью порядка 1012 бит/с. Другими словами по одному стекловолокну можно передать одновременно 10 милиионов телефонных разговоров и миллион видеосигналов. В оптическом волокне могут распространяться световые сигналы двух разных ортогональных поляризаций, что позволяет удвоить пропускную способность оптического канала связи. На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут.

2. Стекловолокно обладает очень малым затуханием (по сравнению с другими средами). Лучшие образцы российского волокна имеют затухание 0,22 дБ/км на длине волны 1,55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. Для сравнения, лучшее волокно Sumitomo на длине волны 1,55 мкм имеет затухание 0,154 дБ/км. В оптических лабораториях США разрабатываются еще более "прозрачные", так называемые фторцирконатные волокна с теоретическим пределом порядка 0,02 дБ/км на длине волны 2,5 мкм. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регерационными участками через 4600 км при скорости передачи 1 Гбит/с.

Технические особенности:

1. Волокно изготавливается из кварца, основу которого составляет двуокись кремния, широко распространенного, а поэтому недорого материала, в отличие от меди.

2. Оптические волокна имеют диаметр около 100 мкм, т.е. очень компактны и легки, что делает их перспективными для использования в кабельной технике.

3. Секловолокна не являются металлом, поэтому при строительстве систем связи автоматически достигается гальваническая развязка сегментов. Применяя особо прочный пластик, на кабельных заводах изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении. Такие кабели можно монтировать, например, на опорах контактной сети, экономя значительные средства на прокладку кабеля и организацию переходов через реки и другие преграды.

4. Системы связи на основе оптических волокон устойчивы к электромагнитным полям, а передаваемая по световодам информация защищена от несанкционированного доступа.

5. Важным свойством оптического волокна является долговечность. Время жизни волокна превышает 25 лет, что позволяет проложить оптико-волоконный кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены передатчиков и приемников на более быстродействующие.

Эффективность применения тех или иных линий связи во многом зависит от потребного количества каналов. Известно, что с увеличением числа каналов стоимость 1 кан.-км линии связи снижается. Целесообразность применения различных направляющих систем передачи в зависимости от потребного числа каналов приведена на рис. 1.

Как видно из рисунка, самой дешевой является связь по световоду и волноводу, затем идет коаксиальный кабель, и наконец, самой дорогой является связь по воздушным линиям. Оптические кабели целесообразно применять при потребности в 1000 и более каналов. Рассмотрим сравнительную стоимость 1 кан.-км для цифровых систем передачи

Из рисунка видно, что по сравнению с электрическим кабелем стоимость связи по оптическим кабелям падает с ростом числа каналов в более резкой зависимости. Оптические системы по сравнению с электрическими дороже при небольшом числе каналов и дешевле при большом числе каналов. В настоящее время экономически целесообразными являются ВОЛС со скоростью 34 Мбит/с и выше.

Однако, в волоконной технологии есть и свои недостатки:

1. При создании линии связи требуются высоконадежные активные элементы, преобразующие электрические сигналы в оптические и наоборот, производство которых стоит очень дорого.

2. Другой недостаток заключается в том, что для монтажа оптических волокон требуется прецизионное, о потому дорогое технологическое оборудование.

3. Как следствие, при аварии (обрыве) оптического кабеля затраты на восстановление выше, чем при работе с традиционными кабелями с медными жилами.

Тем не менее преимущества от применения волоконно-оптических линий связи настолько значительны, что несмотря на перечисленные недостатки оптического волокна, данные линии связи все шире используются для передачи информации.

2. СТРУКТУРНЯ СХЕМА ВОЛОКОННО-ОПТИЧЕСКОЙ СВЯЗИ

Структурная схема передачи информации по оптическим кабелям приведена на рис. 3.

Информация, передаваемая абонентами через передатчик, поступает на электрооптический преобразователь (ЭОП), роль которого выполняет лазер (Л) или светодиод (СД). Здесь электрический сигнал преобразуется в оптический и направляется в ОК. На приеме оптический сигнал поступает в оптико-электрический преобразователь (ОЭП), в качестве которого используется фотодиод (ФД), преобразующий оптический сигнал в электрический. Таким образом, на передающей стороне от передатчика до ЭОП, а также на приемной стороне от ЭОП до приемника действует электрический сигнал, а от ЭОП до ОЭП по оптическому кабелю проходит оптический сигнал.

Электрический сигнал, создаваемый частотным или временным методом, модулирует оптическую несущую, и в модулируемом виде световой сигнал передается по оптическому кабелю. В основном используется способ модуляции интенсивности оптической несущей, при котором от апмлитуды электрического сигнала зависит мощность излучения, передаваемая в ОК.

Оптические системы передачи, как правило являются цифровыми (импульсными). Это объясняется тем, что передача аналоговых сигналов требует высокой степени линейности промежуточных усилителей, которую трудно обеспечить в оптических системах.

Через определенные расстояния (5, ...., 100 км), обусловленные энергетическим потенциалом аппаратуры и величиной потерь в ОК, вдоль оптической линии располагаются линейные регенераторы (ЛР), в которых сигнал восстанавливается и усиливается до требуемого значения. Кроме того, для преобразования кода и согласования элементов схемы имеются кодирующие устройства - преобразователи кода (ПК) и согласующие устройства (СУ). Преобразователь кода формирует трубуемую последовательность импульсов и осуществляет согласование уровней по мощности между электрическими и оптическими элементами схемы ( от аппаратуры ИКМ поступает высокий уровень, а для электропреобразователей необходим весьма малый уровень). Передающие и приемные согласующие устройства формируют и согласовывают диаграммы направленности (диаграмма направленности - это телесный угол, в котором действует максимальная интенсивность излучения) и апертурный угол между приемопередающими устройствами и кабелем. Применяются также устройства ввода и вывода излучения, сростки, для сращивания оптических волокон и кабелей, направленные ответвители, фильтры и другие элементы оптического тракта.

3. ПРИНЦИП ДЕЙСТВИЯ СВЕТОВОДОВ. ТИПЫ СВЕТОВОДОВ

Волоконный световод представляет собой тонкую двухслойную стеклянную нить (сердечника и оболочки), каждый элемент которой обладает различным показателем преломления. Показатель преломления (n) прозрачного вещества представляет собой отношение скорости света в вакууме (с) к скорости света в данном веществе (v), то есть n=c/v. Кроме того, показатель преломления зависит от параметров среды и рассчитывается по формуле:

,

где

и
- относительные соответственно диэлектрическая и магнитная проницаемости.

Учитывая, что относительная магнитная проницаемость прозрачного вещества обычна постоянна и равна единице, показатель преломления определится: для сердечника

, для оболочки
. Показатель преломления оболочки постоянен, а сердечника в общем случае является функцией поперечной координаты. Эту функцию называют профилем показателя преломления.

Для передачи электромагнитной энергии по световоду используется известное явление полного внутреннего отражения на границе раздела двух диэлектрических сред, поэтому необходимо, чтобы n1 >n2 .


Рассмотрим случай, когда луч света, распространяющийся в среде с показателем преломления n1 , встречает границу раздела со средой, имеющей меньший показатель преломления n2 (рис. 4).

В соответствии с законом Снеллиуса

, угол
в среде с меньшим показателем преломления больше, чем угол падения
. При возрастании
возрастает и
, и поскольку
больше
,
станет равным 900 раньше, чем
. Угол падения, для которого преломленный луч скользит по поверхности раздела ( то есть, для которого
=900 ), называется углом
полного внутреннего отражения. Угол полного внутреннего отражения рассчитывается по формуле (см. закон Снеллиуса, полагая, что
=900 ):