Смекни!
smekni.com

Выращивание плёнки GeSi и CaF2 на кремниевых подложках (стр. 7 из 8)

Рис. 2.13. фотография поверхности образца 77 (толщина плёнки CaF2 330Å) полученная с помощью АСМ


Поверхности гетероструктур достаточно гладкие: высота микрорельефа не превышает 12 Ǻ, что говорит о двумерно-слоевом механизме роста плёнки. Инородные включения и проколы диаметром 20 нм и более – отсутствуют. Однако, учитывая, что на аналогичной пленке измерены I-V характеристики, и они показали малые токи утечки, можно предположить, что это не сквозные проколы. На образце с меньшей толщиной заметны ступени роста, образующие невысокие (h < 5 нм) холмики роста. Кроме того, на поверхности плёнки отчётливо видны следы скольжения дислокаций.

Картины линий скольжения отличаются от таковых для слабо релаксированной системы GeSi/Si(001) только наличием оси симметрии третьего порядка. Это связано с использованием подложек Si, имеющих ориентацию поверхности, параллельно плоскости (111). Следовательно, можно утверждать, что релаксация механических напряжений несоответствия в данных гетероструктурах происходит таким-же путем, как и в гетероструктурах GeSi/Si, то есть за счет скольжения дислокаций. Так же как и в гетероструктурах GeSi/Si, степень релаксации возрастает с ростом толщины пленки. Это заметно по большей плотности линий скольжения на образце №76 (h=55 нм), по сравнению с образцом №77 (h=33нм).

Необходимо обратить внимание, что типичная длина следов скольжения превышает латеральный размер холмиков роста, являвшихся, по-видимому, центрами зарождения пленки на начальной стадии. Это означает, что скольжение дислокаций началось уже после образования сплошной пленки. То есть, как и система GeSi/Si(001), гетеросистема CaF2/Si(111) имеет стадию псевдоморфного роста.

2.3.3 Электрические характеристики плёнок

Основными критериями пригодности диэлектрических пленок для создания приборных структур являются электрическое сопротивление и напряженность электрического поля, при которой наступает пробой.

Для образца 253 с помощью I-V метода были измерены электрические характеристики плёнки CaF2. На рис 2.15 ВАХ МДП конденсаторов Si/CaF2/Al, сформированных на образце №253.

Рис. 2.14 ВАХ МДП конденсатора Si/CaF2/Al

Образец Толщина плёнки CaF2, нм Удельное сопротивление, Ωּcm Пробивное напряжение, В/см
253 29 1011 1,5ּ106

По приведённой характеристике были рассчитаны значения удельного сопротивления плёнки CaF2. (ρ) и критическая напряжённость электрического поля, при котором происходит пробой диэлектрика (Епр). Рассчитанное удельное сопротивление оказалось равным ρ ≈1011 Ω×cm. Полученное значение примерно на порядок величины превосходит таковое для образцов с низкой температурой (850 °С) очистки поверхности перед ростом, измерявшихся в работе [34]. Температура предростовой очистки образца 253 составляла 1280 °С. Применение столь высокой температуры очистки позволяет удалить с поверхности подложки карбид кремния. Возможно предположить, что именно это является причиной высокого удельного сопротивления диэлектрической плёнки.

Епр=1,5ּ106 В/см, что сравнимо с лучшими показателями для плёнок выращенных на подложкахах Si(100), имеющими лучшие электрические характеристики по сравнению с плёнками выращенными на слоях с ориентацией (111) (см. литобзор).

Необходимо отметить, что в наших экспериментах после роста образец не подвергался отжигу. По имеющимся литературным данным [33], при использовании отжига электрические характеристики плёнок значительно улучшаются (как правило на порядок величины для ρ и Епр). Таким образом, можно говорить о том, что выращенные плёнки могут использоваться для приборных структур, поскольку имеют хорошую морфологию поверхности: малую шероховатость и отсутствие проколов в плёнке. Кроме того они обладают хорошими электрическими характеристиками, сравнимыми с характеристиками плёнок выращиваемых на слоях с ориентацией (100).

Выводы: Выращены образцы гетероструктур с пленками CaF2 на подложках Si(111), обладающие хорошими стркутрными и диэлектрическими параметрами. Установлено, что релаксация механических напряжений несоответствия в пленках протекает за счет скольжения дислокаций. Получены данные, косвенно подтверждающие наличие псевдоморфной стадии роста пленок. Показано, что повышение температуры очистки поверхности кремния перед выращиванием пленок CaF2 улучшает диэлектрические характеристики пленок.


3. ОХРАНА ТРУДА И ТЕХНИКА БЕЗОПАСНОСТИ

3.1 Общие положення

Ответственность за организацию и проведение работ по охране труда и технике безопасности (ТБ) возлагается на заведующего лабораторией. Контроль за выполнением правил по ТБ и охране труда в лаборатории осуществляется инженером по ТБ и общественным инспектором по охране труда и ТБ профсоюзной группы лаборатории.

Сотрудники лаборатории, виновные в нарушении правил по ТБ или не принявшие меры к их выполнению, привлекаются к административной или уголовной ответственности согласно действующему законодательству.

Инструкции по ТБ для всех видов работ в лаборатории должны основываться на действующих правилах и отражать условия и меры безопасного выполнения работающим возложенных на него обязанностей. Инструкции должны быть согласованы с инженером по ТБ и утверждены заместителем директора по научной части. Инструкции, связанные с выполнением работ повышенной опасности, согласовываются с Отделом охраны труда.

3.2 Лица, ответственные за безопасность работы

Ответственными за безопасное производство работ в лаборатории являются: ответственные руководители работ, производители работ, члены бригады.

Ответственные руководители работ отвечают за:

1) Необходимость и безопасность работ.

2) Достаточность предусматриваемой меры безопасности.

3) Достаточность квалификации лиц, которым поручается работа.

4) Обеспечение надзора и контроля при работах.

Производителями работ являются младшие научные сотрудники, инженеры, стажеры-исследователи и лаборанты.

Производители работ отвечают за:

1) Выполнение порученной работы.

2) Соблюдение мер безопасности, предусмотренных ответственным руководителем работ и выполнение требований инструкции по ТБ.

Для выполнения работ временного характера (ремонт оборудования, переноска и установка оборудования, и прочие работы) заведующий лабораторией формирует из сотрудников лаборатории бригаду и назначает ответственного руководителя работ (бригадира). Члены бригады отвечают за:

1) Выполнение порученной им работы и указаний ответственного руководителя работ.

2) Соблюдение им лично мер безопасности, предусматриваемых правилами по ТБ.

3.3 Требования к рабочим, обучение и проверка знаний

Персонал лаборатории должен быть технически здоровым и не иметь болезней и увечий, препятствующих выполнению работ. Сотрудники лаборатории при приеме на работу обязаны пройти медицинский осмотр и проходить повторные осмотры в установленные сроки.

При выполнении работ в лаборатории сотрудники обязаны выполнять только разрешенные им виды работ. Сорудники, непосредственно занятые на выполнении работ с электро-техническим оборудованием или осуществляющие руководство и организацию работ, обязаны изучить "Правила технической эксплуатации и безопасности обслуживания электроустановок промышленных предприятий" в соответствующих частях, настоящие правила и инструкции по ТБ в лаборатории.

Студенты-практиканты, сотрудники других лабораторий института, работники других предприятий, проходящие обучение и стажировку, допускаются к работе на экспериментальных установках и лабораторном оборудовании только под руководством и безотлучным наблюдением сотрудника лаборатории, к которому прикреплен обучающийся распоряжением заведующего лаборатории или письменным распоряжением дирекции института. Обучающий работе на экспериментальной установке должен иметь квалификационную группу не ниже четвертой.

Периодическая проверка знаний правил электробезопасности и ТБ у сотрудников лаборатории проводится квалификационной комиссией Института в установленные сроки 1 раз в год с выдачей удостоверения на право допуска к работе. Внеочередная проверка знаний проводится при всех случаях нарушения правил ТБ.

3.4 Требования к размещению экспериментальных установок и лабораторного оборудования, ввод его в эксплуатацию

Все экспериментальные установки и лабораторное оборудование размещаются на производственных площадях по планировкам, согласованным с главным энергетиком, инженером по ТБ и утвержденным заместителем директора по научной части. В планировках должны быть указаны в масштабе: габариты установок и лабораторного оборудования, рабочие проходы, места размещения переносных измерительных приборов, рабочие места для работников, осуществляющих управление, техническое обслуживание и наладку переносных установок и оборудования.

При размещении установок и лабораторного оборудования на производственных площадях лаборатории необходимо руководствоваться "Строительными нормами и правилами проектирования", "Санитарными нормами", "Противопожарными нормами".

Для работников, осуществляющих управление установками и оборудованием, техническое обслуживание и наладку, должны быть предусмотрены рабочие места следующих размеров:

1) С лицевой стороны, где производится работа на установке и управление оборудованием-не менее 1 м при отсутствии общего прохода и открывающихся дверей (снимающихся ограждений); не менее 1.5 м при наличии общего прохода; не менее 2 м при наличии общего прохода и открывающихся дверей (снимающихся ограждений). Расстояние следует отсчитывать от максимально выступающей точки установки, оборудования и до следующего ряда оборудования или стены.