Смекни!
smekni.com

Реконструкция линии связи с заменой аналоговой системы передачи К-60П на цифровую систему передачи (стр. 3 из 6)

Рис.3 Первый этап преобразования аналоговой районированной ГТС в цифровую районированную ГТС

На втором этапе вводится вторая цифровая АТС. При этом организуются прямые пучки СЛ между цифровыми АТС по полносвязной схеме. На рисунке 4 представлена схема второго этапа цифровизации.

Рис.4. Второй этап преобразования аналоговой районированной ГТС в цифровую районированную ГТС

3. Расчет ожидаемой защищенности цифрового сигнала от собственной помехи

Защищенность определяют на входе решающего устройства регенератора.

Причиной возникновения ошибок при передаче цифрового сигнала являются помехи, если их мгновенные значения в момент принятия решения при восстановлении (регенерации) сигнала превышают допустимые приделы.

Согласно рекомендациям МККТТ для цифрового линейного тракта, соединяющего двух абонентов разных национальных сетей связи, допустимая вероятность ошибок должна составлять:

. При этом 70% приходится на соединительную линию между оконечными станциями двух национальных сетей, а оставшиеся 30% делятся поровну (по 15%) между национальными сетями. Для них, очевидно, допустимая вероятность ошибочного приема символа не должна превышать

.

Для первичной национальной сети это норма делится поровну между тремя основными составляющими первичной сети: магистральной (МПС), внутризоновой (ВЗПС) и местной (сельской (СПС) и городской (ГПС)) таким образом, что на каждую из них приходится одинаковая величина

[Кириллов].

Тогда допустимый километрический коэффициент ошибок для рассчитываемого ЦЛТ длинной

:

,
,

Для ЦЛТ(цифровой линейный тракт) длиной

:

.

Допустимый коэффициент ошибок на входе регенератора

найдем по формуле:

Для регенерационного участка номинальной длины:

Для укороченных участков, прилегающих к оконечным пунктам:

Найдём требуемое значение защищенности, при котором обеспечивается допустимый коэффициент ошибки регенерации линейного тракта. При передаче кода МЧПИ оно может быть рассчитано по следующей приближенной формуле:

,
,

Где

– запас помехоустойчивости, величина которого характеризует качество изготовления регенератора, для вторичной цифровой системы передачи рекомендуется брать
[Кириллов].

Рассчитаем

для регенерационного участка номинальной длины:

;

для укороченных участков, прилегающих к оконечным пунктам:

.

Значение ожидаемой величины защищенности сигнала от собственной помехи рассчитывается по формуле:

,
,

Где

– абсолютный уровень пиковой мощности импульса на входе регенератора,
;

– уровень теплового шума линии,
;

– коэффициент шума корректирующего усилителя,
;

– тактовая частота,
;

– значение затухания для участка регенерации,
;

Абсолютный уровень пиковой мощности импульса на входе регенератора рассчитывается по формуле:

,
,

Где

– амплитуда импульса на входе участка регенерации, для системы передачи ИКМ-120-4
;

– волновое сопротивление кабельной сети связи, значение которого для марки кабеля МКСБ 4×4×1,2 равен
.

.

Уровень теплового шума линии рассчитывается по формуле:

,
,

Где

– постоянная Больцмана;

– абсолютная температура,
;

,
– рабочий диапазон частот линейного тракта.

Уровень шума при максимальной температуре грунта

:

.

Найдем величину затухания на участке регенерации номинальной длины

по формуле:

,

Где

– коэффициент затухания на полутактовой частоте при максимальной температуре на глубине закладки кабеля.

Найдем величину затухания на укороченном участке регенерации по формуле:

,

Рассчитаем ожидаемую защищенность сигнала от собственной помехи на участке регенерации номинальной длины:

;

на укороченном участке, прилегающем к оконечному пункту:

.

Сравним полученные значения.

Для регенерационного участка номинальной длины:

.

Для укороченного регенерационного участка:

.

Из сравнения видно, что имеется большой запас по помехозащищённости при заданных протяжённостях участка регенерации, следовательно, эти участки выбраны верно.

4. Расчет переходных влияний ЦСП на АСП

Линейный тракт АСП К-60 построен по двухкабельной схеме. После реконструкции двухкабельный режим работы сохраняется. В этом случае является переходная помеха, связанная с наличием переходного влияния на дальнем конце (ПВДК). Схематически влияние одной ЦСП на АСП показано на рис.5. Видно, что на участке АСП имеется несколько источников помехи (регенераторов), поскольку длина усилительного участка АСП К-60 значительно превосходит длину участка регенерации ЦСП ИКМ-120-4.

Рис. 5 Влияние ЦСП на АСП

Однако, вклады регенераторов в суммарную помеху неодинаковы: последний на усилительном участке регенератор вносит существенно большую помеху, чем все остальные вмести взятые, так как уровень сигнала на входе линейного усилителя АСП весьма мал. Учитывая ПВДК, обусловленное только этим регенератором, приходим к частотной модели влияния ЦСП на АСП на одном усилительном участке, показанной на рис 6.

Рис.6 Частотная модель влияния ЦСП на АСП


Защищенность АСП от ЦСП можно рассчитать, как разность между уровнем полезного сигнала в канале тональной частоты, который передается в линейном спектре на частоте f, и уровнем переходной помехи, попавшей в полосу частот

этого канала.