Смекни!
smekni.com

Электронный измеритель-регулятор температуры (стр. 2 из 9)

Для питания датчика использован имеющийся в микросхеме DD2 источник опорного напряжения величиной 2,8±0,4В Внутри микросхемы он соединен плюсом с выводом 1 питания микросхемы. Вывод 32 опорного напряжения обозначен – Uа и соединен с общим проводом.

Делитель из резисторов R4, R7, R10 – R13 снижает напряжение до 600 мв, что по величине соответствует напряжению на диоде VD1 при температуре 0С; подстроечный резистор R10 обеспечивает его небольшую регулировку. Делитель формирует также напряжение 200 мВ, соответствующее разности напряжений, снимаемых с диода VD1 и движка резистора R11 при показании термометра 100 °С. Это напряжение подается на входы Uоб микросхемы DD2, оно может быть тоже подстроено резистором R12.

Элементы R5, R6, С2 определяют частоту задающего генератора (50 кГц), цепочка R8СЗ сглаживает наводки и шумы и способствует защите от статического электричества. Конденсатор С6 служит для хранения образцового напряжения, резистор R14 и конденсатор С9 являются элементами интегратора микросхемы, С10 входит в цепь автокоррекции куля.

Конденсаторы С1, С5, С7, С8 – блокировочные а цепях питания. Конденсатор С4 устраняет наводки переменного напряжения с частотой сети, которые при его отсутствии детектируются на нелинейности диода VD1 и существенно искажают показания.

Микросхема DD1 используется для постоянного включения запятой НЗ и контроля разрядки батареи. При напряжении питания более 8 В напряжение на выводе 6 микросхемы DD1 ниже порога переключения, поэтому запятая Н4 невидима. При разрядке батареи напряжение питания микросхемы DD1 остается постоянным, а напряжение на ее входе 6 относительно вывода 7 возрастает. При напряжении батареи менее 8 В напряжение на входе 6 становится выше порога переключения и запятая Н4 становится видимой.

Особо следует отметить назначение резистора R9. Дело в том, что нестабильность источника опорного напряжения микросхемы DD2 составляет примерно 0,01%/°С и 0,1% при снижении напряжения свежезаряжениой батареи 7Д-0.125Д с 9,8 В до 8 В (неполная разрядка). Для использования в цифровом мультиметре с разрядностью 3 1/2 такая нестабильность допустима. В описываемом термометре это изменение опорного напряжения приводит к ошибке в 0,6 мВ или в 0,3 °С, что заметно. Частично можно скомпенсировать эту погрешность подбором резистора R9, уменьшив ошибку до 0,1 °С.

Следующим расмотренным типом термометра будет бортовой термометр-вольтметр, принципиальная схема которого приведена на рис. 1.3.

Рис. 1.3. Принципиальная схема бортового-термометра вольтметра.

Основой прибора служат аналого-цифровой преобразователь (АЦП) DD1 и три микросхемных датчика температуры DА1-DА3. Датчики можно рассматривать как стабилитроны с малым дифференциальным сопротивлением (менее 1 Ом) и напряжением стабилизации, пропорциональным абсолютной температуре. Рабочий ток через них (около 1 мА) задан резистором R4. Точку измерения температуры (а значит, тот или иной датчик) выбирают переключателем SА1 (секция SА1.2).

Для того чтобы показания термометра были нулевыми при нулевом значении измеряемой температуры, на вход АЦП следует подать разность между напряжением на датчике и образцовым напряжением 2,732 В. Образцовое напряжение должно быть высокостабильным (температурный коэффициент напряжения источника, встроенного в микросхему КР572ПВ2А, слишком велик). Поэтому в приборе в качестве источника образцового напряжения использован микросхемный стабилизатор КР142ЕН19А (DА6) с весьма малой температурной зависимостью выходного напряжения.

Микросхема DА6 работает в режиме регулируемого прецизионного стабилитрона. Необходимое напряжение стабилизации 2,732В устанавливают подстроечным резистором R9, а ток стабилизации (около 6мА) задает резистор R13.

Измеряемой температуре 100 °С соответствует напряжение 1 В между входами АЦП +1Uвх и – Uвх. Для того, чтобы при этом на табло НG1-НG4 появилось показание «100,0», необходимо подать образцовое напряжение 1 В на входы +Uобр и – Uобр АЦП. Это напряжение снимают с движка подстроечного резистора R15.

Частота работы генератора АЦП выбрана из стандартного ряда – 50 кГц, ее задают элементы С12R18. Указанным параметрам соответствуют номиналы элементов интегратора R17 и C11 и емкость конденсатора C10 автокоррекции «нуля». Конденсатор С5 уменьшает влияние наводок на датчики, а С8 исключает паразитную генерацию внутреннего источника образцового напряжения АЦП (-2,9 В).

Индикатор НG1 указывает знак и первую цифру наибольшего значения измеряемой температуры – «единицу». Через горизонтальный элемент индикатора течет ток (определяемый резистором R19, из-за чего элемент постоянно высвечивает знак «минус». Полярность напряжения, подаваемого на входы Uвх АЦП, противоположна обычной, поэтому при плюсовой температуре на выходе g1 АЦП действует низкий логический уровень, включающий дополнительно два вертикальных элемента индикатора НG1, формируя знак «плюс». «Единица» включается на на индикаторе HG1, лишь когда измеряемая температура достигает 100 С и более.

Напряжение питания прибора в целом стабилизировано микросхемным стабилизатором DA4. Пятивольтное напряжение для питания индикаторов HG1-НG4 сформировано стабилизатором DА5. Значения напряжения на схеме указаны относительно верхнего по схеме плюсового проводника (подключаемого к плюсовому выводу аккумуляторной батареи через контакты секции SА1.1 переключателя и дроссель L1).

Для измерения напряжения аккумуляторной батареи служит делитель R5-R8. С резисторов R6 и R7 напряжение, равное 0,01 напряжения батареи, подано на вход АЦП во втором сверху по схеме положении переключателя SА1 (цифрами обозначены номера его контактов). Напряжению батареи 12В соответствуют напряжение 120 мВ на входе АЦП и показания табло «12,0». Если желательно иметь точность измерений до 10 мВ, делитель R5-R8 должен обеспечивать на резисторах R6 и R7 напряжение, равное 0,1 напряжения батареи, и, кроме того, необходима еще одна секция переключателя SА1 для управления положением десятичной запятой.

Ещё одним типом рассмотренных термометров будет цифровой термометр, принципиальная схема которого приведена на рис. 1.4.

Датчиком температуры описываемого прибора служит кремниевый диод. При этом используется линейная зависимость падения напряжения на нем от температуры при фиксированном прямом токе смещения. Температурный коэффициент напряжения (ТКН) для кремниевых диодов практически постоянен в диапазоне –60…+100С и составляет –2… – 2,5 мВ/С – в зависимости от типа диода и значения тока смещения. Как показали исследования, практически любой кремниевый диод или транзистор может быть использован как линейный температурный преобразователь в диапазоне от –55С до +125С


Основные технические характеристики термометра

Интервал измеряемой температуры, С…………………………… – 50…+120

Разрешающая способность, С………………………………………………. 0,1

Погрешность измерения, С

На краях рабочего интервала……………………………………… +0,7

В средней части рабочего интервала, не хуже……………………+-0,3

Диапазон измерения температуры окружающего воздуха, С…………0….50

Напряжение источника питания………………………………………………9

Потребляемый ток, мА, не более……………………………………………1,5

Рис. 1.4. Принципиальная схема цифрового термометра

Датчиком термометра, функцию которого выполняет диод VD1, питается от источника тока, выполненного на полевом транзисторе VT1. С анода датчика сигнал, линейно зависящий от измеряемой температуры, через фильтр помех R5C1 поступает на вывод 30 инвертирующего входа микросхемы DD1 (поскольку ТКН диодного датчика отрицателен). В качестве источника стабильного напряжения, питающего цепи, определяющие точность термометра, используется разность напряжений между выводами 1 и 32 DD1, которая поддерживается внутренним стабилизатором АЦП на уровне 2,8+-0,4В. Температурный коэффициент этой разности напряжений равен примерно 10-4К-1. Чтобы свести к минимуму влияние этого ТКН на процесс измерения, в прибор введен еще один источник тока – на транзисторе VТ2. Он питает подстроенные резисторы RЗ и R4, служащие для калибровки термометра.

Транзистор VТЗ обеспечивает индикацию десятичной точки во втором разряде ЖКИ НG1. Источником питания прибора может быть батарея «Корунд» или аккумуляторная батарея 7Д-0.125. Работоспособность термометра и все его параметры сохраняются при снижении напряжения источника питания до 6,8 В

Резисторы R1 и R2 лучше ваять типа С2–29В; подстроенные RЗ и R4 – СП5–2, остальные – МЛТ – 0,125. Конденсаторы СЗ и С4 – К71–5, К72–9, К73–16; С6 – оксидный К52–16; остальные могут быть любого типа.

Перед установкой транзисторов VT1 и VТ2 желательно найти их термостабильные рабочие точки. Для этого транзистор вместе с резистором между затвором и стоком нужно подключить через миллиамперметр к источнику стабилизированного напряжения 2,8 8 и изменить температуру транзистора, касаясь его корпуса сначала горячим, затем холодным металлическим предметом. Подбором резистора добиться наименьшего изменения тока стока в диапазоне температуры 0…50 °С. Номиналы подбираемых резисторов R1 и R2 могут значительно отличаться от указанных на схеме. Ток стока транзисторов VT1 и VT2 должен быть в пределах 200..300 мкА.

В домашних условиях настраивать термометр удобнее всего по температуре таяния льда и кипения воды. Предварительно движок резистора RЗ следует установить в положение, соответствующее напряжению на нем 0,57…0,6 В, а движок резистора R4 – 0,21…0,23 В. Измеряя датчиком температуру воды тающего льда, установите резистором RЗ нулевые показания индикатора прибора. Затем, поместив датчик в кипящую воду, резистором R4 устанавливают показания, равные температуре кипения воды при данном атмосферном давлении. Такую процедуру настройки следует повторить несколько раз.