регистрация /  вход

Модель рассеяния электромагнитной волны параллелепипедом из диэлектрика с потерями (стр. 1 из 4)

Содержание

Введение.........................................................................................................

Основные уравнения.....................................................................................

Фурье-компоненты рассеянной волны......................................................

Уравнения Виннера-Хопфа..........................................................................

Приближенные решения..............................................................................

Примеры расчетов и примеры экспериментов.........................................

Заключение....................................................................................................

МОДЕЛЬ РАССЕЯНИЯ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ

ПАРАЛЛЕЛЕПИПЕДОМ ИЗ ДИЭЛЕКТИКА С ПОТЕРЯМИ.

ВВЕДЕНИЕ.

В настоящей статье изучается задача рассеяния плоской волны параллелепипедом из диэлектрика с потерями, причем считается, что размеры параллелепипеда сравнительно больше по отношению к длине волны. При исследовании используется метод Виннера-Хопфа. А именно, посредством обобщения решения задачи для полубесконечного тела, полученного в работе Джоунса, попытаемся распространить результаты для полубесконечных пластин из диэлектрика с большим потерями так же, как было получено решение для параллелепипеда из проводника. Само собой разумеется, что полученные результаты совпадают с решением для случая идеального проводника, если считать удельную электрическую проводимость бесконечно большой. В качестве характерной особенности предлагаемого метода, по-видимому, можно указать на то, что этот метод, так же как и метод в случае параллелепипеда из проводника, оказывается чрезвычайно эффективным в применении к телам с поперечным сечением в виде продолговатого прямоугольника, большая сторона которого сравнительно велика по отношению к длине волны. Конечно, в случае больших размеров тел приближение геометрической оптики и приближение физической оптики могут практически применяться в качестве наиболее простых методов, однако, для того, чтобы знать в каком диапазоне размеров эти приближения являются верными, необходимо выполнить точные расчеты и провести эксперименты. В данной работе приводятся также и результаты модельных экспериментов, в которых использовались микроволны; проведено сравнительное изучение с результатами расчетов. Что касается среды с большими потерями, то в параллелепипеде закреплялся бетон, а в качестве проводника использовалась алюминиевая пластина, изготовленная в виде параллелепипеда.

На рис.1 представлено схематическое изображение параллелепипеда и геометрические данные рассматриваемой задачи. В данном случае исследуется задача рассеяния (двухмерная) плоской волны (Е-волны), падающей на параллелепипед из диэлектрика с большими потерями под углом q к оси х . Ширина параллелепипеда равна 2а , толщина - 2b . Считаем, что изменение во времени описывается фактором

.


Рис.1. Схематическое изображение данных задаче

ОСНОВНЫЕ УРАВНЕНИЯ.

Полное электромагнитное поле (t ), рассеянная волна (S ) и падающая волна (i ) связаны следующим соотношением:

( 1 )

Считаем, что падающая плоская волна в рассматриваемой задаче может быть задана в следующем виде:

( 2 )

Здесь:

,
- диэлектрическая проницаемость и магнитная проницаемость в вакууме.

В силу строения рассеивающего тела (двухмерности задачи) плоскость поляризации неизменна, уравнения Максвелла можно записать в следующем виде:

(3)

Здесь индекс j=0 относится к волновому уравнению в вакууме, а j=1 - к волновому уравнению в среде с потерями. Кроме того, величины e , s представляют собой диэлектрическую проницаемость и удельную электрическую проводимость среды с потерями,

обозначает комплексную относительную диэлектрическую проницаемость.

Решение уравнений (3) в данной задаче можно отыскивать так, чтобы удовлетворялись следующие граничные условия:

(В1) условия излучения вовне при r ®¥ ;

(В2) непрерывность

при | y |=b ;

(В3) непрерывность

при | x |=a, | y |=b ;

(В4) непрерывность

при | y |=b ;

(В5) условия концевой точки при | x |=a , | y |=b .

При решении задачи используется преобразование Фурье и обратное преобразование Фурье, которые определяются ниже следующим образом:

(4)

Здесь контур интегрирования С в обратном преобразовании представляет собой контур интегрирования в интеграле с бесконечными пределами, находящийся в общей области Д¢, которая может быть получена на основании предположения о том, что в вакууме имеются незначительные потери (JmK0<0) (область Д, не являющаяся общей, обусловлена существованием полюса z=z0, сопутствующего падающей волне).

Рис.2. Плоскость комплексной переменной z и контур интегрирования С

ФУРЬЕ-КОМПОНЕНТЫ РАССЕЯНОЙ ВОЛНЫ

Для проведения исследования дальше разложим рассеянную волну на три электромагнитные волны следующим образом:

, (5)

причем считаем, что каждая электромагнитная волна при | y | £b удовлетворяет следующим соотношениям:

(6)

Здесь: L(x) - ступенчатая функция:

(7)

Смысл индексов, которыми снабжены каждая из электромагнитных волн, как видно из формул (6), определяющих эти электромагнитные волны, заключается в следующем. Нижний индекс «0»соответствует тому, что поле удовлетворяет волновому уравнению в вакууме, а индекс «1» - тому, что поле удовлетворяет волновому уравнению в среде с потерями. Другими словами, эти индексы соответствуют значениям индекса j =0, 1 в уравнениях (3). Кроме того, верхний значок (+) указывает на то, что данное поле имеет смысл только при x >a , а значок (-) - на то, что рассматриваемое поле имеет смысл только при x <-a . В силу этих определений делаются особенно ясными аналитические свойства Фурье-компонент каждой электромагнитной волны и становится возможным выполнение исследования, основанного на теоретико-функциональных рассуждениях.

Найдем теперь Фурье-компоненты рассеянной волны. Прежде всего посредством перехода к прямому преобразованию Фурье в волновом уравнении (3) при | y | ³b можно получить следующее уравнение:

(8)

Решение этого уравнения, удовлетворяющее граничным условиям (В1), (В2), может быть записано следующими образом:

(9)

Считаем здесь, что ветвление

выбирается условием
. Кроме того, неизвестные функции представляют собой, как показывают приводимые ниже формулы, Фурье-компоненты рассеянной волны при | y | = b . Наконец, точка
представляет собой полюс, происходящий от падающей волны:

(10)

(11)

Здесь значок справа у неизвестной функции

указывает на то, что в случае значка «+» эта функция регулярна в верхней полуплоскости ( в области U ), а в случае значка « - » рассматриваемая функция регулярна в нижней полуплоскости ( в области L ). В дальнейшем используется этот способ обозначений.

С другой стороны, при |y | £b существует разрыв в среде. В результате выполнения прямого преобразования Фурье в волновом уравнении (3) оно превращается в следующие дифференциальные уравнения неодинакового порядка:

Похожие статьи

Видео

Узнать стоимость написания работы
Оставьте заявку, и в течение 5 минут на почту вам станут поступать предложения!