Система управления двухкоординатным объектом (стр. 1 из 5)

Государственное образовательное учреждение

высшего профессионального образования

«Московский государственный текстильный университет

имени А.Н.Косыгина»

Кафедра автоматики и промышленной электроники

Научно-исследовательская работа

«Система управления двухкоординатным объектом»

Выполнили: студентки 5 курса

ФИТАЭ

Проверил: доц

Москва 2008


Содержание

Введение

Разработка схемы стабилизации температурных режимов при производстве фторидных оптических волокон и схемы системы управления координатным столом

Принцип работы схемы системы управления стабилизации температуры

Принцип работы схемы системы управления каналами «X» и «Y»

Разработка печатной платы для стабилизации температурных режимов и центровки заготовки

Разработка схемы управления шаговым электроприводом для регулирования натяжения нитей в процессе ленточного снования

Анализ работы принципиальной электрической схемы управления

Выбор и расчет элементов схемы

Разработка печатной платы для управления шаговым электроприводом в процессе снования

Блок управления шаговым двигателем SMD-42

Программируемый контроллер SMC-3-1

Шаговый двигатель ДШИ-200-3

Принцип работы программы SMC_Program v.2.8

Назначение программы

Интерфейс пользователя

Выбор и настройка порта

Панель индикаторов

Управление через панель

Ручной режим управления

Заключение

Введение

В большом числе технологических процессов требуется управление объектом по двум координатам. В нашем случае объектом является координатный стол, для управления которого используем шаговый электропривод. В процессе ленточного снования применяется управление объектом – регулирующим органом – по одной координате. Задача заключается в минимизации затрат на узел, высокоточном управлении.

Разработаем схему стабилизации температурных режимов при производстве фторидных оптических волокон и схему системы управления координатным столом. А также схему управления шаговым электроприводом для регулирования натяжения нитей в процессе ленточного снования.

Разработаем печатные платы (два канала – для управления координатным столом и один канал – для стабилизации температурных режимов при производстве фторидных оптических волокон; для управления регулирующим органом в процессе снования).

Разработка схемы стабилизации температурных режимов при производстве фторидных оптических волокон и схемы системы управления координатным столом

Составим функциональную схему стабилизации температурных режимов рис. 1, состоящую из релейного регулятора и схемы управления шаговым электродвигателем ШД-200-3. Информация о положении заготовки поступает от лазерного датчика фирмы «ВЕТА». По каналу информация о температуре в зоне нагрева поступает в виде аналогового сигнала, принимающего либо положительное, либо отрицательное значение в зависимости от направления рассогласования. Этот сигнал поступает на вход релейного регулятора, выполненного в виде триггера Шмита, обеспечивающего статическую характеристику реального реле с зоной нечувствительности и с гистерезисом. Шаговый двигатель работает в реверсивном режиме, обеспечивая подачу газа с помощью клапана, который при необходимости открывается и подаёт инертную среду.

Рис. 1. Функциональная схема стабилизации температурных режимов.

В процессе вытяжки фторидных волокон недостаточно только поддерживать температуру на заданном уровне, необходимо также одновременно центрировать заготовку. С этой целью используется координатный стол, жёстко скреплённый с трубой, в которой находится заготовка.

Для реализации перемещения координатного стола составим функциональную схему системы управления, рис. 2.Она состоит из двух идентичных каналов, состоящих из релейного регулятора и схемы управления шаговым электродвигателем ШД-200-3. Информация о положении заготовки поступает от лазерного датчика фирмы «ВЕТА».

По каждому из двух каналов информация о положении заготовки поступает в виде аналогового сигнала, принимающего либо положительное, либо отрицательное значение в зависимости от направления рассогласования. Этот сигнал поступает на вход релейного регулятора, выполненного в виде триггера Шмита, обеспечивающего статическую характеристику реального реле с зоной нечувствительности и с гистерезисом. Шаговые двигатели работают в реверсивном режиме, обеспечивая перемещение координатного стола в направлении уменьшения величины рассогласования положения заготовки, относительно центра нагревательного устройства.

Рис. 2. Функциональная схема системы управления координатным столом.

Регулятор, реализованный на операционных усилителях, обеспечивает следующую статическую характеристику:

Рис. 3. Статическая характеристика регулятора

ширина петли

Реализуем выше приведённые функциональные схемы, а именно схему стабилизации температурных режимов рис. 4 и схему системы управления координатным столом рис. 5.

Рис. 4. Схема системы управления стабилизации температуры.


Рис. 5. Схема системы управления координатным столом.

Ток, протекающий по цепи с диодами VD1 – VD2, равен:

mA

Ом = 1000 Ом = 1 kОм

Ом = 0.5 kОм, соответственно
kОм, так как это максимальное значение сопротивлений для этого участка цепи, то выберем значения меньшие полученного, чтобы резисторы во время работы не нагревались:

Ом

Выберем сопротивления:

Ом и
МОм,

соответственно:

=100 Ом и
МОм.

Транзисторы VT1 - VT8 возьмём серии КТ3102Г.

На выходе операционного усилителя (ОУ серии К140УД7) имеем сигнал U=4В, сопротивления:

Ом.

Ток, протекающий по цепи с транзисторами VT1, VT2, VT5 и VT6 I = 1mA (при таком токе транзистор полностью открыт), следовательно

Ом = 5 kОм. Опять же это максимальные номиналы резисторов, при них они будут нагреваться, поэтому возьмём значения немного меньшие:

kОм.

Блок SMD-42 работает при токе I

mA, выберем значение I = 6 mA.

Ом = 2 kОм.

У стабилитронов VD19, VD20, VD9 и VD10 напряжение стабилизации должно быть в диапазоне 2.4 – 3.6 В, возьмём серии 2С101А.

Операционный усилитель не терпит большой разницы напряжения между входами. Для защиты входов от перенапряжения используются диоды, включенные между входами встречно - параллельно VD1-VD8 и VD11-VD18 типа КД503А.

Принцип работы схемы системы управления стабилизации температуры

Зона нечувствительности определяется величиной напряжения, падающего на открытых диодах VD1 и VD2, равного примерного 0.3 - 0.4 В.

Когда величина входного напряжения превышает верхний порог срабатывания триггера Шмита, то в зависимости от знака входного напряжения либо на выходе DA1 (схема на нём запускается при входном импульсе напряжении отрицательной полярности), либо на выходе DA2 (схема на нём запускается при входном импульсе напряжения положительной полярности) формируется уровень напряжения, равный напряжению насыщения операционного усилителя. Это напряжение переводит в режим насыщения либо транзистор VT1, либо транзистор VT2, что, в свою очередь, определяет по какому алгоритму будет совершаться работа дальше.

Сигнал идёт на логические элементы, определяющие работу двигателя (совершать реверс или работать в обычном режиме) с помощью которого открывается клапан подачи газа. В случае достижения координатным столом крайних положений срабатывают конечные переключатели J1 и J2, блокирующие работу двигателей. В этом случае вывести координатный стол из конечного положения можно только в ручном режиме.

Шаговый привод реализован с помощью блока SMC-3, который вырабатывает импульсные сигналы, и блока SMD-42, отвечающий за работу двигателя ДШИ-200 в соответствии с заложенной программой.

Принцип работы схемы системы управления каналами «X» и «Y».

Зона нечувствительности определяется величиной напряжения, падающего на открытых диодах VD1 и VD2, равного примерного 0.3 - 0.4 В.


Copyright © MirZnanii.com 2015-2018. All rigths reserved.