Смекни!
smekni.com

Технологія випробування мікросхеми К155 ЛА7 за категорією К5 (стр. 4 из 7)

3.1.2 Робота камери тепла і холоду

На рисунку 3.1 наведена схема камери тепла і холоду КТХ-0.4-65/155, призначеної для випробування малогабаритних ІМ на стійкість до підвищеної (до +1550С) та зниженої (до -650С) температур. Камера забезпечує підтримання температури в діапазонах -65…+100 і +100…+1550С з точністю не гірше

10С і
1%. Нерівноважність розподілу температури по об’єму камери складає
40С. При встановленні в камері заданого режиму середня швидкість змін температури в діапазонах +35…-650С і +35…+1550С відповідне не менше 0.5 і 1.50С/хв. Робочій об’єм камери 0.4 м3.

Для створення в камері позитивних температур служить нагрівач 1, а для покращення теплообміну між нагрівачем і повітрям в корисному об’ємі 3 камери і зменшення нерівноважного розподілу температури в об’ємі – вентилятор 5. Температури нижче 00С створюють за допомогою холодильної машини, яка може працювати в двох режимах: помірного (до -200С) і сильного (до -650С) холоду. При роботі в першому режимі хладагент (рідкий фреон-22) із конденсатора 12 через вентиль 11, теплообмінник 10, фільтр 9 і соленоїдний клапан 8 надходить в терморегулюючий вентиль 7 і через нього подається в випарник 6. На випарювання фреону потрібна велика кількість тепла, яка відбирається з повітря, що знаходить в об’ємі камери. В результаті температура в камері знижується, а фреон через теплообмінник 10 повертається в компресор 13 і стискається до тиску конденсації. Із компресора пари фреону поступають в конденсатор, де вони знову конденсуються, відаючи тепло водопровідній воді, що охолоджує конденсатор.


1 – нагрівач; 2 – двері; 3 – корисний об’єм; 4, 6 – випарники; 5 – вентилятор; 7 – терморегулюючий вентиль; 8 – соленоїдний клапан; 9, 20 – фільтри; 10, 14, 26 – теплообмінники; 11, 23 – вентилі; 12 – конденсатор теплотехнічний; 13, 22 – компресори; 15 – конденсатор-випарник; 16, 25 – термовентилі; 17, 19, 21, 24 – соленоїдні вентилі; 18 – дюза; 27 – ємність.

Рисунок 3.1 – Схема камери тепла і холоду КТХ-0.4-65/155

При роботі в другому режимі використовують другий хладагент – фреон-13, а фреон-22 служить для охолодження фреону-13. Соленоїдний клапан закривається, і рідкий фреон-22 через соленоїдний вентиль 17 і термовентиль 16 поступає в змійовик конденсатора-випарника 15. Забравши тепло у поступаючого сюди ж із компресора 22 через теплообмінник 14 газоподібного фреону-13, фреон-22 випаровується, а фреон-13 конденсується в міжтрубному просторі конденсатора-випарники. Випарюваний фреон-22 через теплообмінник 10 повертається в компресор 13, а рідкий фреон-13 із конденсатора-випарника через теплообмінник 26, соленоїдний вентиль 21 і фільтр 20 по двом паралельним віткам: соленоїдному вентилю 24 і термовентилю 25, з однієї сторони, і обвідної лінії – соленоїдному вентилю 19 в дюзі 18 – з другої, поступає в випарник 4 і охолоджує камеру. Обвідна лінію слугує для збільшення швидкості виходу на заданий режим (діапазон -30…-500С). В інших випадках соленоїдний вентиль 19 закритий. Із випарника 4 пари фреону-13 нагнітаються компресором 22 в теплообмінник 14, що охолоджується водою, звідки поступають в міжтрубний простір конденсатора-випарника, де в результаті охолодження рідким фреоном-22 знову відбувається їх конденсація. Для зберігання фреону-13 при ремонті холодильної машини (М2) служить ємність 27, яка пов’язана з усмоктуючою і нагрівальною сторонами компресора системою трубопроводів і вентилів 23.

Камера має ручне управління для перевірки і налагодження холодильних агрегатів і нагрівача і автоматичне – для створення і підтримки температурних режимів. Управління камерою і регулювання температури виконується за допомогою блоку управління. Потрібну температуру встановлюють по задатчику температури (ЗТ), який разом з датчиками температури (R1, R2), розміщеними в камері, утворює термочутливий міст. Доки температура в камері не досягне необхідного значення, з мосту на вхід регулятора температури (РТ) поступає сигнал, пропорційний відхиленню температури. Фаза цього сигналу залежить від знаку заданої температури (- або +). З виходу регулятора температури на вхід управляючого пристрою (УП) подається постійна напруга, пропорційна розбалансу мосту. В залежності від знаку напруги сигнал з виходу УП поступає на тиристорний регулятор (ТР), що змінює напругу на нагрівачі, або на пусковому пристрої (ПП), що управляє роботою холодильних машин (М1 і М2). Коли температура в камері досягне необхідного рівня, міст балансується, сигнал на його виході становиться рівним нулю, і нагрівач або холодильні машини вимикаються. Контролюється і записується температура за допомогою врівноваженого мосту (ВМ) КСМ1-002, що працює від датчика температури – терморезистора R3. При порушенні нормального режиму роботи камери (зміна температури, зупинка вентилятора) спрацьовує звукова і світлова сигналізація.

Випробувані вироби закріплюють в спеціальних пристосуваннях. Матеріали, що застосовуються для кріплення малогабаритних виробів, повинні мати велику теплопровідність. Пристосування встановлюють на платі, що розміщена всередині корисного об’єму і має гнізда, з’єднані із штепсельними роз’їмами, що знаходяться зовні камери. З’єднання виконують термостійким екранованим проводом з надійно заземленим екраном. До штепсельних роз’їмів підключають випробувальну і вимірювальну апаратуру.

В процесі експлуатації камер подібного типу слідкують за справністю всіх елементів, звертаючи особливу увагу на справність заземлюючих пристроїв, рівень масла в компресорах і періодично перевіряючи герметичність холодильної системи.

3.2 Випробування на багатократні удари

3.2.1 Механізм дії удару

В механізмі абсолютно твердого тіла удар розглядається як деякий стрибкоподібний процес, тривалість якого безкінечно мала. Під час удару в точці зіткнення тіл виникають великі, але миттєво діючі сили, що призводять до конечної зміни кількості рухів. В реальних системах завжди діють конечні сили в продовж конечного інтервалу часу, та співудар двох тіл, що рухаються, пов’язаний з їх деформацією поблизу точки зіткнення та розповсюдження хвилі стиснення всередині цих тіл. Тривалість удару залежить від багатьох фізичних факторів: пружних характеристик матеріалу співударних тіл, їх форми і розміру, відносної швидкості зближення та ін.

Зміну прискорення в часі називають імпульсом ударного прискорення або ударним імпульсом, а закон зміни прискорення в часі – формою ударного імпульсу. До основних параметрів ударного імпульсу відносять пікове ударне прискорення (перевантаження),тривалість дії ударного прискорення і форму ударного імпульсу. Результат дії удару на виріб (реакція виробу) залежить від його динамічних властивостей – маси, жорсткості та частоти власник коливань.


аm11, am21, am31 – максимальні позитивні прискорення під час удару; am12, am22, am32 – теж саме, після удару; аm23 – максимальне негативне прискорення під час удару; аm14, am24, am34 – теж саме після удару.

Рисунок 3.2 – Криві збудження виробів при ударі

За реакцією ІМ на дію ударного імпульсу розуміють відгук виробу на цю дію. Розрізняють декілька основних видів реакції ІМ, що відповідають балістичному (або квазіамортизаційному), квазірезонансному і статичному (або квазістатичному) режимам збудження.

Характеристики прискорення

для виробів з різними періодами Т01власних коливань наведені на рис.3.2. При Т01>>τ – балістичний режим збудження – максимальне значення аm12 прискорення виробу завжди менше максимального (пікового) значення аn прискореннязбудженого ударного імпульсу: аm12<аn(рис.3.2, а). При Т01
τ – квазірезонансний режим збудження – аm21>аn (рис.3.2, б). При Т01<<τ спостерігається статичний режим збудження – виріб повторює діючий ударний імпульс, тому аm31=аn (рис.3.2, в). В цьому випадку після дії імпульсу мають місце залишкові коливання власної частоти f0 виробу.

3.2.2 Характеристики режимів випробування

Розрізняють два види випробувань на ударне напруження: на ударну пружність і ударну стійкість. При випробуванні на ударне напруження випробуванні дослідні ІМ піддають впливу або одиночного, або багатократний ударів. В останньому випадку частота слідування ударів повинна бути такою, щоб можна було виконати контроль параметрів ІМ, що перевіряються. Основні характеристики режимів використання ІМ при багатократному впливі ударів – пікове ударне прискорення і загальне число ударів – що задаються у відповідності із ступенем жорсткості випробування (табл.3.1).