Смекни!
smekni.com

Расчет и проектирование диода Ганна (стр. 5 из 7)

Время формирования домена не должно превышать полупериода СВЧ - колебаний. Поэтому имеется и второе условие существования движущегося домена τф<T/2, из которого получаем n0 / f >105см -3*c.

В зависимости от соотношения времени пролета и периода СВЧ - колебаний, а также от значений постоянного напряжения U0 и амплитуды высокочастотного напряжения Um могут быть реализованы следующие доменные режимы: пролетный, режим с задержкой домена, режим с подавлением (гашением) домена. Процессы, происходящие в этих режимах, рассмотрим для случая работы диода Ганна на нагрузку в виде параллельного колебательного контура с активным сопротивлением Rн на резонансной частоте и питанием диода от генератора напряжения с малым внутренним сопротивлением. При этом напряжение на диоде изменяются по синусоидальному закону. Генерация возможна при U0 > Uпор..

При малом сопротивлении нагрузки, когда Rн ≃ R0 , где R0= l /(en0µ1S)-сопротивление диода Ганна в слабых полях, амплитуда высокочастотного напряжения Um невелика и мгновенное напряжение на диоде превышает пороговое значение. Здесь имеет место рассмотренный ранее пролетный режим, когда после формирования домена ток через диод остается постоянным и равным Iнас= Sen0vнас .При исчезновении домена ток возрастает до Imax .Для GaAs Imax / Iнас≃ vmax/ vнас≃ 2. Частота колебания в пролетном режиме равна fпр. Так как отношение Um / U0 мало, к.п.д. генераторов на диоде Ганна, работающих в пролетном режиме, невелик и этот режим обычно не имеет практического применения.

При работе диода на контур с высоким сопротивлением , когда Rн>R0 , амплитуда переменного напряжения Um может быть достаточно большой, так что в течение некоторой части периода мгновенное напряжение на диоде становится меньше порогового. В этом случае говорят о режиме с задержкой формирования домена. Домен образуется, когда напряжение на диоде превышает пороговое, т.е в момент времени t1. После образования домена ток диода уменьшается до Iнас и остается таким в течение времени пролета tпр домена. При исчезновении домена на аноде в момент времени t2 напряжение на диоде меньше порогового и диод представляет собой активное сопротивление R0 .Изменение тока пропорционально напряжению на диоде до момента t3, когда ток достигает максимального значения Imax ,а напряжение на диоде равно пороговому. Начинается образование нового домена, и весь процесс повторяется. Длительность импульса тока равна времени запаздывания образования нового домена τ3 = t3 - t2 .Время формирования домена считается малым по сравнению с tпр и Т. Очевидно, что такой режим возможен, если время пролета находится в пределах Т/2 < tпр < T и частота генерируемых колебаний составляет fпр/2 < f < fпр.

При еще большей амплитуде высокочастотного напряжения, минимальное напряжение диода может оказаться меньше напряжения гашения диода Uгаш. В этом случае имеет место режим с гашением домена. Домен образуется в момент времени t1 и рассасывается в момент времени t2 ,когда U = Uгаш. Новый домен начинает формироваться после того, как напряжение превысит пороговое значение. Поскольку исчезновение домена не связано с достижением им анода, время пролета электронов между катодом и анодом в режиме гашения домена может превышать период колебаний: tпрT/2. Таким образом, в режиме гашения f>fпр/2. Верхний предел генерируемых частот ограничен условием T/2>τф и может составлять (2÷3)fпр

Электронный к.п.д. генераторов на диодах Ганна, работающих в доменных режимах, можно определить, раскладывая в ряд Фурье функцию тока I(t)для нахождения амплитуды первой гармоники и постоянной составляющей тока. Значение к.п.д зависит от отношений U0/Uпор, Rн/R0, f/fпр, vнас/vmax и при оптимальном значении n0≈(1÷ 2)*1015 см-3 не превышает для диодов из GaAs 6% в режиме с задержкой домена. Электронный к.п.д. в режиме с гашением домена меньше, чем режиме с задержкой домена.

Режим ОНОЗ.

Несколько позднее доменных режимов был предложен и осуществлен для диодов Ганна режим ограничения накопления объемного заряда. Он существует при постоянных напряжениях на диоде, в несколько раз превышающих пороговое значение, и больших амплитудах напряжения на частотах, в несколько раз больших пролетной частоты. Для реализации режима ОНОЗ требуются диоды с очень однородным профилем легирования. Однородное распределение электрического поля и концентрации электронов по длине образца обеспечивается за счет большой скорости изменения напряжения на диоде. Если промежуток времени, в течение которого напряженность электрического поля проходит область ОДП характеристики v (E), много меньше времени формирования домена τф ,то не происходит заметного перераспределения поля и объемного заряда по длине диода. Скорость электронов во всем образце «следует» за изменением электрического поля, а ток через диод определяется зависимостью скорости от поля..

Таким образом в режиме ОНОЗ для преобразования энергии источника питания в энергию СВЧ- колебаний используется отрицательная проводимость диода. В этом режиме в течение части периода колебаний длительностью τ1 напряжение на диоде остается меньше порогового и образец находится в состоянии, характеризуемом положительной подвижностью электронов, т.е. происходит рассасывание объемного заряда, который успел образоваться за время, когда электрическое поле в диоде было выше порогового.

Рисунок 1.6- Временная зависимость тока диода Ганна в режиме ОНОЗ

Условие слабого нарастания заряда за время Т- τ1 можно записать в виде τф≈3τд.ср>T, где τд.ср=ɛɛ0/(en0диф.ср|); µдиф.ср- среднее значение отрицательной дифференциальной подвижности электронов в области E>Eпор .Рассасывание объемного заряда за время τ1 будет эффективным, если τ1д1 и T>> τд1, где τд1=ɛɛ0/(en0µ1); τд1 и µ1 –постоянная времени диэлектрической релаксации и подвижность электронов в слабом поле.

Электронный к.п.д. генератора на диоде Ганна в режиме ОНОЗ можно рассчитать по форме тока .При U0 / Uпор = 3÷4 максимальный к.п.д. составляет 17%.

В доменных режимах частота генерируемых колебаний примерно равна пролетной частоте. Поэтому длина диодов Ганна, работающих в доменных режимах, связана с рабочим диапазоном частот выражением:

l ≈ 100/f, (1.14)

где f выражена в ГГц, а l- в мкм. В режиме ОНОЗ длина диода не зависит от рабочей частоты и может во много раз превышать длину диодов, работающих на тех же частотах в доменных режимах. Это позволяет значительно увеличивать мощность генераторов в режиме ОНОЗ по сравнению с генераторами, работающими в доменных режимах.

Рассмотренные процессы в диоде Ганна в доменных режимах являются, по существу, идеализированными, так как реализуются на сравнительно низких частотах ( 1-3 ГГц),где период колебаний значительно меньше времени формирования домена, а длина диода много больше длины домена при обычных уровнях легирования (1014- 5*1015 см-3).Чаще всего диоды Ганна в непрерывном режиме используют на более высоких частотах в так называемых гибридных режимах. Гибридные режимы работы диодов Ганна являются промежуточными между режимами ОНОЗ и доменным. Для гибридных режимов характерно, что образование домена занимает большую часть периода колебаний. Не полностью сформировавшийся домен рассасывается, когда мгновенное напряжение на диоде снижается до значений, меньших порогового. Напряженность электрического поля вне области нарастающего объемного заряда остается в основном больше порогового. Процессы, происходящие в диоде в гибридном режиме, анализируют с применением ЭВМ при использовании формул

dE/dx = e/εε0 [n(x) – n0 ], (1.15)

Гибридные режимы занимают широкую область значений n0 / f и не столь чувствительны к параметрам схемы, как режим ОНОЗ.

Режим ОНОЗ и гибридные режимы работы диода Ганна относят к режимам с «жестким» самовозбуждением, для которых характерна зависимость отрицательной электронной проводимости от амплитуды высокочастотного напряжения. Ввод генератора в гибридный режим (как и в режиме ОНОЗ) представляет сложную задачу и обычно осуществляется последовательным переходом диода из пролетного режима в гибридные.