Расчет и проектирование диода Ганна (стр. 1 из 7)

СОДЕРЖАНИЕ

Введение

I. Анализ конструктивных особенностей полупроводниковых диодов

1.1 Полупроводниковые диоды

1.1.1 Выпрямительные диоды

1.1.2 Диодные матрицы и сборки. Стабилитроны и стабистроны

1.1.3 Ограничители напряжения

1.1.4 Варикапы. Излучающие диоды

1.2 СВЧ-диоды

1.2.1. Детекторные диоды

1.2.2. Смесительные СВЧ-диоды

1.2.3. Переключательные СВЧ-диоды

1.2.4. Туннельные диоды

1.2.5. Обращенные диоды

1.2.6. Лавинно-пролетные диоды

1.3 Диод Ганна

II. Расчет параметров и характеристик диода Ганна

Вывод

Список используемой литературы


Введение

Научно-технический прогресс немыслим без электроники. Интенсивное развитие электроники связано с появлением новых разнообразных полупроводниковых приборов и интегральных микросхем, которые находят применение в вычислительной технике, автоматике, радиотехники.

Полупроводниковые приборы в виде точечных диодов, или, как их раньше называли, кристаллических детекторов, применяли еще в первых электронных установках. Выпрямительные свойства контактов между металлами и некоторыми сернистыми соединениями были обнаружены в 1874 г. А.С.Поповым (впервые был использован полупроводниковый диод-детектор в его радиотелеграфном приёмнике) в 1895 г при изобретении радио был применен порошковый когерер, в котором использовались нелинейные свойства зернистых систем. В 1922г О.В.Лосев (открыл способность полупроводникового диода генерировать и усиливать электрические сигналы) использовал отрицательное дифференциальное сопротивление, возникающее при определенных условиях на точечных контактах металла с полупроводником, для генерации и усиления высокочастотных электромагнитных колебаний. Кроме того, им было обнаружено свечение кристаллов карбида кремния при прохождении тока через точечный контакт.

Однако в этот период успешно развивается техника электровакуумных приборов и из-за недостаточного знания строения полупроводников и происходящих в них электрофизических процессов полупроводниковые приборы тогда не получили существенного развития и применения.

В годы Великой Отечественной войны были разработаны точечные высокочастотные и сверхвысокочастотные германиевые и кремниевые диоды. В 1942г в СССР был начат выпуск полупроводниковых термоэлектрических генераторов для непосредственного преобразования тепловой энергии в электрическую. Термогенераторы использовались для питания переносных радиостанций партизанских отрядов. Создание и производство этих и многих других приборов стало возможно благодаря фундаментальным теоретическим и экспериментальным исследованиям свойств полупроводников, проведенным группой ученых под руководством академика А.Ф. Йоффе.

С 1948г с моментов создания американскими учеными Дж. Бардиным, В. Браттейном, и В. Шокли точечного транзистора начался новый этап полупроводниковой электроники. В пятидесятых годах были разработаны различные типы транзисторов, мощных германиевых и кремниевых выпрямительных диодов, тиристоров, туннельных диодов и других полупроводниковых приборов.[1]

Большая работа по изучению процессов выпрямления выполнена немецким ученым В.Шоттки и американским ученым Н.Моттом. Но наиболее крупным достижением в области полупроводниковых приборов явилось изобретение в 1984 г американскими учеными Д.Б.Бардиным, В.Браттейном и У.Шокли полупроводникового усилительного элемента - транзистора. Обладая практически неограниченным сроком службы, транзисторы позволили существенно повысить надежность радиоэлектронных систем, во много раз уменьшить их размеры и сократить потребления ими электрического тока.

В СССР первые образцы точечных транзисторов были изготовлены в 1949 г А.В. Красиловым и С.Г. Мадоян.

Открытие транзистора послужило началом нового этапа в развитии полупроводниковой электроники. В период с 1948 по 1985г было создано более 60 различных типов твердотельных приборов, из которых в настоящее время отечественной и зарубежной промышленностью освоено производство более 30.

Параллельно с разработкой полупроводниковых выпрямителей и усилителей были разработаны приборы, принцип действия которых основан на свойствах полупроводниковых материалов изменять свое сопротивление под действием различных внешних факторов.

Нелинейные полупроводниковые резисторы –терморезисторы, фоторезисторы и варисторы - нашли широкое применение в электронной и радиоэлектронной аппаратуре, автоматике и электротехнике. Первые работы, посвященные вопросам конструирования и применения нелинейных резисторов, были опубликованы в конце 50-х годов. Создание новых типов нелинейных резисторов связано с именами советских ученых Б.Т.Коломийца, И.Т.Шефтеля, В.В Пасынкова.

Большим событием в радиотехнике и технике связи было появление туннельного диода. Его изобретение принадлежит японскому ученому Л.Есаки. В 1957г изучая p-n –переходы, изготовленные в сильнолегированном германии, он обнаружил аномальный ход вольт- амперных характеристик, обусловленный туннельным эффектом.

В последующие годы наблюдается быстрое продвижение полупроводниковых приборов в область сверхвысоких частот. Прогресс в этом направлении был достигнут в результате значительного усовершенствования технологии изготовления СВЧ- транзисторов, туннельных диодов и варикапов. В 1959 г советским ученым А.С. Тагером и его сотрудниками была обнаружена генерация когерентных колебаний СВЧ в p-n –переходе при ударной ионизации. Этот эффект стал основной лавинно-пролетного диода, на котором создан класс СВЧ- устройств: генераторы, усилители и преобразователи частоты.

Несмотря на достигнутые успехи в полупроводниковой электронике, нельзя считать знания в этой области достаточными. Предстоят исследования новых свойств полупроводников и создание принципиально новых приборов.

Полупроводниковая электроника дала возможность развернуть работы по миниатюризации и микроминиатюризации электронного оборудования.[2]


I. АНАЛИЗ КОНСТРУКТИВНЫХ ХАРАКТЕРИСТИК ПОЛУПРОВОДНИКОВЫХ ДИОДОВ

1.1 Полупроводниковый диод

Полупроводниковый диод- это полупроводниковый прибор с одним выпрямляющим электрическим переходом и двумя внешними выводами, в котором используется то или иное свойство выпрямляющего перехода.

В качестве выпрямляющего электрического перехода в полупроводниковых приборах может быть электронно-дырочный переход, гетеропереход или контакт металл-полупроводник.

В диоде с электронно-дырочным переходом кроме выпрямляющего электрического перехода должно быть два невыпрямляющих перехода, через которые p- и n-области диода соединены с выводами. В диоде с выпрямляющим электрическим переходом в виде контакта металл- полупроводник всего один невыпрямляющий переход.

а)

Н В Н

а) с электронно-дырочным переходом; В - выпрямляющие контакты;

Н - невыпрямляющие контакты

Рисунок 1.1 Структура полупроводниковых диодов

Обычно полупроводниковые диоды имеют несимметричные электронно-дырочные переходы. Поэтому при прямом включении диода количество неосновных носителей, инжектированных из сильнолегированной области в слаболегированную область, значительно больше, чем количество неосновных носителей, проходящих в противоположном направлении. В соответствии с общим определением область полупроводникового диода, в которую происходит инжекция неосновных носителей, называют базой диода. Таким образом, в диоде базовой областью является слаболегированная область.

В зависимости от соотношения линейных размеров выпрямляющего перехода и характеристической длины различают плоскостные и точечные диоды. Характеристической длиной для диода является наименьшая из двух величин, определяющая свойства и характеристики диода: диффузионная длина неосновных носителей в базе или толщина баз.

Плоскостным называют диод, у которого линейные размеры, определяющие площадь выпрямляющего электрического перехода, значительно больше характеристической длины.

Точечным называют диод, у которого линейные размеры, определяющие площадь выпрямляющего электрического перехода, значительно меньше характеристической длины.

Выпрямляющий переход кроме эффекта выпрямления обладает и другими свойствами: нелинейностью вольт- амперной характеристики; явлением ударной ионизации атомов полупроводника при относительно больших для данного перехода напряжениях; явлением туннелирования носителей сквозь потенциальный барьер перехода как при обратном, так в определенных условиях и при прямом напряжении; барьерной емкостью. Эти свойства выпрямляющего перехода используют для создания различных видов полупроводниковых диодов: выпрямительных диодов, смесителей, умножителей, модуляторов, стабисторов, стабилитронов, лавинно-пролетных диодов, туннельных и обращенных диодов, варикапов.[1]

1.1.1 Выпрямительные диоды

Диоды, используемые в электрических устройствах для преобразования переменного тока в ток одной полярности, называют выпрямительными.

Разновидностью выпрямительных диодов являются лавинные диоды. Эти приборы на обратной ветви ВАХ имеют лавинную характеристику, подобную стабилитронам. Наличие лавинной характеристики позволяет применять их в качестве элементов защиты цепей от импульсных перенапряжений, в том числе непосредственно в схемах выпрямителей.

1.1.2 Диодные матрицы и сборки

Диодные матрицы и сборки предназначены для использования в многоступенчатых диодно-резистивных логических устройствах, выполняющих операции И, ИЛИ, диодных функциональных дешифраторах, различных коммутаторов тока и других импульсных устройствах. Конструктивно они выполнены в одном корпусе и могут быть электрически соединены в отдельные группы или в одну группу (общий анод и раздельные катоды, общий катод и раздельные аноды), последовательно соединены или электрически изолированы.


Copyright © MirZnanii.com 2015-2018. All rigths reserved.