Смекни!
smekni.com

Полупроводники 3 (стр. 3 из 8)

а для квазиимпульсов имеет место закон сохранения, аналогичный закону сохранения импульса: р' = р +q » р, (6)

где q — волновой вектор фотона. Импульс фотона q практически пренебрежимо мал по сравнению с квазиимпульсами электронов. Поэтому справедливо приближённое равенство ~p' » p.

Собственное поглощение света невозможно при энергии фотона w, меньшей ширины запрещенной зоны DE (минимальная энергия поглощаемых квантов w = DE называется порогом или краем поглощения). Это означает, что для длин волн l > lмакс = 2pc/DE (7)

чистый Полупроводники прозрачен. Строго говоря, минимальная энергия квантов, поглощаемых данным Полупроводники, может быть >DE, если края зоны проводимости Ec и валентной зоны Eu соответствуют различным р. Переход между ними не удовлетворяет требованию р = р’, в результате чего поглощение начинается с больших w, т. е. с более коротких длин волн (для Ge переходы в Г-минимум зоны проводимости, см. рис. 3).

Однако переходы, для которых р ¹ р’, всё же возможны, если электрон, поглощая квант света, одновременно поглощает или испускает фонон. Если частота фонона wк, а импульс равен р — р’, то закон сохранения энергии имеет вид: w = Ек (р') — Ен (р) ± wк (8)

Т. к. энергии фононов малы (wк~ 10-2 эв) по сравнению с DE, то их вклад в (8) мал. Оптические переходы, в которых электрон существенно изменяет свой квазиимпульс, называются непрямыми, в отличие от прямых, удовлетворяющих условию р = р'. Необходимость испускания или поглощения фонона делает непрямые переходы значительно менее вероятными, чем прямые. Поэтому. показатель поглощения света К, обусловленный непрямыми переходами, порядка 103см-1, в то время как в области прямых переходов показатель поглощения достигает 105см-1. Тем не менее у всех Полупроводники, где края зоны проводимости и валентной зоны соответствуют разным р, есть область l вблизи lмакс, где наблюдаются только непрямые переходы.

Показатель поглощения света в Полупроводники определяется произведением вероятности поглощения фотона каждым электроном на число электронов, способных поглощать кванты данной энергии. Поэтому изучение частотной зависимости показателя поглощения даёт сведения о распределении плотности электронных состояний в зонах. Так, вблизи края поглощения в случае прямых переходов показатель поглощения пропорционален плотности состояний .

Наличие в спектре поглощения Полупроводники широких и интенсивных полос в области, w порядка DE показывает, что большое число валентных электронов слабо связано. Т. к. слабая связь легко деформируется внешним электрическим полем, то это обусловливает высокую поляризуемость кристалла. И действительно, для многих Полупроводники (алмазоподобные, AIVBVI и др.) характерны большие значения диэлектрической проницаемостиe. Так, в Ge e = 16, в GaAs e =11, в PbTe e = 30. Благодаря большим значениям e кулоновское взаимодействие заряженных частиц, в частности электронов и дырок, друг с другом или с заряженными примесями, сильно ослаблено, если они находятся друг от друга на расстоянии, превышающем размеры элементарной ячейки, что и позволяет во многих случаях рассматривать движение каждого носителя независимо от других. Иначе свободные носители тока имели бы тенденцию образовывать комплексы, состоящие и из электрона и дырки Или заряженной примесной частицы с энергиями связи ~ 10 эв. Разорвать эти связи за счёт теплового движения, чтобы получить заметную электропроводность, при температурах ~ 300 К было бы практически невозможно.

Однако попарное связывание электронов и дырок в комплексы всё же происходит, но связь эта слаба (Есв ~ 10-2эв) и легко разрушается тепловым движением. Такие связанные состояния электрона и дырки в Полупроводники, называются экситонами, проявляются в спектрах поглощения в виде узких линий, сдвинутых на величину Есв от края поглощения в сторону энергий, меньших энергий фотона. Экситоны образуются, когда электрон, поглотивший квант света и оставивший дырку на своём месте в валентной зоне, не уходит от этой дырки, а остаётся вблизи неё, удерживаемый кулоновским притяжением.

Прозрачность Полупроводники в узкой области частот вблизи края собственного поглощения можно изменять с помощью внешних магнитных и электрических полей. Электрическое поле, ускоряя электроны, может в процессе оптического перехода передать ему дополнительную энергию (малую, т.к. время перехода очень мало), в результате чего становятся возможными переходы из валентной зоны в зону проводимости под действием квантов с энергией, несколько меньшей DE. Чёткий край области собственного поглощения Полупроводники при этом слегка размывается и смещается в область меньших частот.

Магнитное поле изменяет характер электронных состояний, в результате чего частотная зависимость показателя поглощения вместо плавной зависимости K ~

принимает вид узких пиков поглощения, связанных с переходами электрона между уровнями Ландау валентной зоны и зоны проводимости. Наряду с собственным поглощением Полупроводники возможно поглощение света свободными носителями, связанное с их переходами в пределах зоны. Такие внутризонные переходы происходят только при участии фононов. Вклад их в поглощение мал, т.к. число свободных носителей в Полупроводники всегда очень мало по сравнению с полным числом валентных электронов. Поглощение свободными носителями объясняет поглощения излучения с w < DE в чистых Полупроводники В магнитном поле становятся возможными переходы носителей между уровнями Ландау одной и той же зоны, которые проявляются в виде резкого пика в частотной зависимости показателя поглощения на циклотронной частоте wс (см. Циклотронный резонанс). В полях ~103—105э при эффективной массе ~(1—0,01) m0wс= 1010—1013сек-1, что соответствует сверхвысоким частотам или далёкому инфракрасному диапазону.

В Полупроводники с заметной долей ионной связи в далёкой инфракрасной области спектра (w ~ 10-2эв) наблюдаются полосы поглощения, связанные с возбуждением (фотонами) колебаний разноимённо заряженных ионов друг относительно друга.

Роль примесей и дефектов в полупроводниках. Электропроводность Полупроводники может быть обусловлена как электронами собственных атомов данного вещества (собственная проводимость), так и электронами примесных атомов (примесная проводимость). Наряду с примесями источниками носителей тока могут быть и различные дефекты структуры, например вакансии, междоузельные атомы, а также недостаток или избыток атомов одного из компонентов в полупроводниковых соединениях (отклонения от стехиометрического состава), например недостаток Ni в NiO или S в PbS.

Примеси и дефекты делятся на доноры и акцепторы. Доноры отдают в объём Полупроводники избыточные электроны и создают таким образом электронную проводимость (n-типа). Акцепторы захватывают валентные электроны вещества, в которое они внедрены, в результате чего создаются дырки и возникает дырочная проводимость (р-типа) (рис. 4). Типичные примеры доноров — примесные атомы элементов V группы (Р, As, Sb) в Ge и Si. Внедряясь в кристаллическую решётку, такой атом замещает в одной из ячеек атом Ge. При этом 4 из 5 его валентных электронов образуют с соседними атомами Ge ковалентные связи, а 5-й электрон оказывается для данной решётки «лишним», т.к. все связи уже насыщены. Не локализуясь ни в одной элементарной ячейке, он становится электроном проводимости. При этом примесный атом однократно положительно заряжен и притягивает электрон, что может привести к образованию связанного состояния электрона с примесным ионом. Однако эта связь очень слаба из-за того, что электростатическое притяжение электрона к примесному иону ослаблено большой поляризуемостью Полупроводники, а размеры области вблизи примеси, в которой локализован электрон, в десятки раз превышают размер элементарной ячейки кристалла. Энергия ионизации примеси ~0,01 эв в Ge и ~0,04 эв в Si, даже при температуре 77 К большинство примесей ионизовано, т. е. в Полупроводники имеются электроны проводимости с концентрацией, определяемой концентрацией донорных примесей.

Рис. 4. Электронные переходы, создающие электропроводность в полупроводнике: 1 — ионизация доноров (проводимость n-типа); 2 — захват валентных электронов акцепторами (проводимость р-типа); 3 — рождение электронно-дырочных пар (собственная проводимость); 4 — компенсация примесей.

Аналогично атомы элементов III группы (В, Al, Ga, In) — типичные акцепторы в Ge и Si. Захватывая один из валентных электронов Ge в дополнение к своим 3 валентным электронам, они образуют 4 ковалентные связи с ближайшими соседями — атомами Ge — и превращаются в отрицательно заряженные ионы. В месте захваченного электрона остаётся дырка, которая так же, как электрон вблизи донорного иона, может быть удержана в окрестности акцепторного иона кулоновским притяжением к нему, однако на большом расстоянии и с очень малой энергией связи. Поэтому при не очень низких температурах эти дырки свободны.

Такие же рассуждения объясняют в случае соединений AIII BV донорное действие примесей некоторых элементов VI группы (S, Se, Te), замещающих атом BV и акцепторное действие элементов II группы (Be, Zn, Cd), замещающих AIII. В Ge тот же Zn — двухзарядный акцептор. т.к. для того, чтобы образовать 4 валентные связи с соседями, он может захватить в дополнение к 2 своим валентным электронам ещё 2, т. е. создать 2 дырки. Атомы Cu, Au могут существовать в Ge в нейтральном, одно-, двух-и трёхзарядном состояниях, образуя одну, две или три дырки.

Рассмотренные примеры относятся к примесям замещения. Примером примесей внедрения в Ge и Si является Li. Из-за малости иона Li+ он, не нарушая существенно структуры решётки, располагается между атомами Ge (в междоузлии); свой внешний валентный электрон, движущийся на существенно большем расстоянии, он притягивает очень слабо и легко отдаёт, являясь, т. о., типичным донором. Во многих Полупроводники типа AIVBVI источники свободных дырок — вакансии атомов AIV, а вакансии BVI — источники электронов проводимости. Из сказанного ясно, что введение определённых примесей (легирование Полупроводники) — эффективный метод получения Полупроводники с различными требуемыми свойствами.