Смекни!
smekni.com

Модернизация лабораторного стенда для исследования характеристик АМ-ЧМ приемника (стр. 2 из 8)

На более глубоком уровне сравнения различия состоят и в том, приемники работают в разных диапазонах частот (АМ приемник – в области ДВ,СВ,КВ; ЧМ приемник – в УКВ диапазоне) и имеют различные промежуточные частоты ( как правило, 465 кГц для приемников АМ и 10,7 МГц – для приемников ЧМ). Такая разница в промежуточных частотах обусловлена тем, что ЧМ сигнал имеет гораздо большую занимаемую полосу – до 250 кГц, а АМ-сигнал – около 6 кГц. Также требования, предъявляемые к усилителю звуковых частот при АМ приеме гораздо ниже (усилитель должен иметь полосу воспроизводимых частот 0,3-6,4 кГц), чем при ЧМ-приеме (полоса 50-10000 Гц). Таким образом, полноценная переделка (с получением всех характеристик, существующих существующим стандартам) приемника АМ сигналов в приемник ЧМ сигналов не имеет смысла, т.к. придется не модернизировать, а заново изготовлять все блоки, за исключением блока питания и выходного устройства. Однако в данном случае нам не требуется получить приемник ЧМ сигналов, который соответствовал бы существующим требованиям, а необходим соответствовал бы существующим требованиям, а необходим лабораторный стенд, который бы


Рисунок 1.3.1,а - Структурная схема супергетеродинного приемника АМ сигналов


Рисунок 1.3.1, б - Структурная схема супергетеродинного приемника ЧМ сигналов

облегчил студентам понимание принципов работы и устройства отдельных узлов приемника ЧМ, а именно: амплитудного ограничителя на диодах; амплитудного ограничителя на транзисторах; частотного детектора; системы автоматической подстройки частоты. Рассмотрим возможность модернизации имеющегося лабораторного макета для получения возможности решать данные задачи. Для исследования амплитудного ограничителя на диодах и полупроводниковых транзисторах, а также частотного детектора необходимы соответствующие узлы. Так как они отсутствуют принципиально в приемнике АМ сигналов, то их придется рассчитать и смонтировать отдельно. Это будет сделано далее в соответствующей главе. Подключить их входные и выходные точки можно через продублированные разъемы на стенде. После монтажа вышеперечисленных узлов для получения системы автоматической подстройки частоты мы уже будем иметь практически все необходимые узлы. Ввиду того, что в лабораторном макете присутствует перестраиваемый по частоте гетеродин, наша задача еще больше упрощается. Так как гетеродин перестраивается по частоте подаваемым на варикап VD1 (см. рисунок 1.1.2) напряжением, то будет достаточно получить требуемую зависимость выходного напряжения частотного детектора от частоты и подать этот управляющий сигнал на варикап. Дополнительно потребуется расширить полосу пропускания усилителя промежуточной частоты, для того, чтобы статическая характеристика определялась только характеристикой частотного детектора. Это можно сделать, исключив из схемы узкополосный фильтр Z1.

2 Разработка принципиальной схемы

2.1 Расчет амплитудного ограничителя

Принципиальная схема транзисторного ограничителя амплитуды приведена на рисунке 2.1.1. Методика расчета взята из [3].

Для уменьшения порогового напряжения и увеличения коэффициента ограничения транзистор работает при пониженном коллекторном напряжении порядка 2-3 В за счет использования резистора Rф.

Выбираем транзистор КТ339А. Его справочные данные, необходимые для расчетов, следующие:

обратный ток коллектора, мкА 2

статический коэффициент передачи тока ОЭ 50

граничная частота передачи тока в схеме с ОЭ, Мгц 550

емкость коллекторного перехода, пФ 0,65

модуль прямой проводимости на частоте 465 кГц, мСм 0,033

Входная и выходная характеристики приведены на рисунке 2.1.2.

Зададимся напряжением питания Eко=6 В и сопротивлением Rф фильтра 1 кОм. Согласно равенству

arctg α1=1/Rф

arctg α1=1/1000, чему соответствует линия 1 на рисунке 2.1.2.

По выходной характеристике, приведенной на рисунке 2.1.2, выбираем рабочую точку А, для которой Iка=2,2 мА и


Рисунок 2.1.1 – Принципиальная схема амплитудного ограничителя


Рисунок 2.1.2 – Характеристики транзистора КТ339А

Iба=50 мкА. Коэффициент включения определяется по формуле:

pк≤(0,75…0,85)√Rфgэ1

где gэ1 – эквивалентная проводимость коллекторного контура.

gэ1эg/δ

где δэ – эквивалентное затухание контура;

δ – собственное затухание контура (принимается равным 0,01);

g – собственная резонансная активная проводимость колебательного контура.

Эквивалентное затухание контура определяется по формуле:

δэ=2 δ(1+g21/g)

где g21 – выходная проводимость транзистора, определяется по справочнику (g21=7*10-6 См).

Собственная резонансная активная проводимость колебательного контура g рассчитывается как

g=δωoCэ

где ωo – резонансная частота (принимается 465 кГц);

Cэ – эквивалентная емкость входного контура (принимается равной 20 пФ).

g=0,01*465000*6,28*20*10-12=0,58*10-6 См

δэ=2*0,01(1+7/0,56)=0,27

gэ1=0,27/0,01*0,58*10-6=15,6*10-6 См

pк=0,8*√103*15,6*10-6=0,1

Емкость конденсатора фильтра вычисляется по формуле:

Сф≥(10…20)/(foRф)=15/465000/1000=32*10-9=32 нФ

Выбираем из стандартного ряда номиналов конденсатор емкостью 33 нФ.


Сопротивление в цепи базы находится по формуле:

Нагрузочная характеристика для переменного тока проходит через точку А (рисунок 2.1.2) и имеет угол наклона, равный

arctg α2= gэ1/p2к

arctg α2=15,6*10-6 /0,01=0,0156

Этому углу соответствует линия 2 на рисунке 2.1.2. Для точки Б получаем Iкмакс=16 мА, Iбмакс=0,35 мА.Максимальная амплитуда входного сигнала, с которой начинается ограничение, равна:

Uмвх.л=0,5(Uбб-Uбв)=0,5(0,9-0,4)=0,25 В.

Rб=(6-0,8)/((16-2,2)*10-3)*25=10 кОм

Амплитуда напряжения на коллекторном контуре определяется по формуле:

Umвых.лкY21 Uмax.вх /gэ1

Umвых.л=0,1*0,033*0,25/15,6*10-6=5,3 В

Когда амплитуда входного сигнала превышает Uмax.вх, транзистор работает с отсечкой обоих полупериодов, и выходной сигнал соответствует уравнению

Umвых.н=Umвых.л Н(Umвх.н/Umвх.л)

где Umвых.н – амплитуда напряжения на выходе ограничителя, В при входной амплитуде Umвх.н, В;

Umвых.л – максимальная амплитуда напряжения на входе, В, при работе в линейном участке;

Н(Umвх.н/Umвх.л) – коэффициент, определяемый по рисунку 2.1.3. Он представляет собой часть амплитудной характеристики ограничителя, работающего в нелинейном режиме.

Пороговое напряжение ограничителя, при котором он еще работает в линейном режиме, определяется по формуле:

Uпор=1,5Umвх.л=1,5*0,25=0,375 В

При отношении Umвх.н/Umвх.л равном двум, находим по рисунку 2.1.3 величину Н. Н=1,25. Следовательно, напряжение на выходе ограничителя составит

Umвых.н=Umвых.л Н(Umвх.н/Umвх.л)=5,3*1,25=6,62 В

Проведя ряд аналогичных вычислений для разных значений входного напряжения, заносим результаты в таблицу 2.1.1.

Таблица 2.1.1

Uвх, В 0,25 0,35 0,5 0.75 1
Н 1 1,15 1,25 1,26 1,27
Uвых, В 5,3 6,1 6,6 6,68 6,73

По этим данным строим график зависимости Uвых=f(Uвх). График этой функции приведен на рисунке 2.1.4. Окончательная принципиальная схема с указанием номиналов деталей приведена в Приложении 2.


Рисунок 2.1.3 – График для нахождения коэффициента Н

Uвых,В
7
6
5
4
3
2
1
Uвх

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Рисунок 2.1.4 – Зависимость Uвых=f(Uвх)

2.2 Расчет частотного детектора

В качестве частотного детектора выбираем частотный детектор с фазовым детектированием, как простой в настройке и не критичный к параметрам применяемых элементов. принципиальная схема частотного детектора приведена на рисунке 2.2.1. Рассчитаем все элементы данной схемы. Методика расчета взята из [14].

Зададим следующие характеристики для расчета:

- номинальная рабочая частота детектора fo=465 кГц;

- максимальная девиация частоты Δfмакс=50 кГц;

- верхняя частота модуляции Fмакс=10 кГц;

Параметры транзистора КТ339А выходного каскада УПЧ (амплитудного ограничителя, рассчитанного выше):