Смекни!
smekni.com

Расчет геометрических размеров резисторов и разработка топологии интегральных микросхем (стр. 3 из 5)

Аналоговые микросхемы предназначены для преобразования и обработки сигналов, изменяющихся по закону непрерывной функции. Частным случаем аналоговых микросхем являются микросхемы с линейной характеристикой, так называемые линейные микросхемы.

Степень интеграции микросхем — показатель степени сложности микросхемы К характеризуется числом содержащихся в ней элементов и компонентов: К=lgN, где К — коэффициент, округляемый до ближайшего большего целого числа; N — число элементов и компонентов, входящих в микросхему. По степени интеграции микросхемы подразделяют на:

малые интегральные схемы (МИС) – схемы (1 – 2)-й степени интеграции, содержащие от нескольких до 100 элементов и компонентов, в состав которых входит один или несколько видов функциональных аналоговых или логических элементов, например логических элементов И, ИЛИ, НЕ, триггеров, усилителей, фильтров и т. п.;

средние интегральные схемы (СИС)— схемы (2—3)-й степени интеграции, содержащие от нескольких десятков до 1000 элементов и компонентов, в состав которых входит один или несколько одинаковых функциональных узлов электронных устройств (регистр, счетчик, дешифратор, постоянное запоминающее устройство);

большие интегральные схемы (БИС)— схемы (3—4)-й степени интеграции, содержащие от нескольких сотен до 10 000 элементов, в состав которых входит одно или несколько функциональных устройств (например, арифметико-логическое устройство, оперативное запоминающее устройство, перепрограммируемое постоянное запоминающее устройство и др.);

сверхбольшие интегральные схемы (СБИС) — схемы (5—7)-й степени интеграции, представляющие собой законченное изделие, способное выполнять функции аппаратуры (например, ЭВМ).

Наибольшей степенью интеграции обладают полупроводниковые микросхемы, затем тонкопленочные и, наконец, толстопленочные. По степени интеграции полупроводниковые микросхемы на биполярных транзисторах уступают интегральным микросхемам на МДП-транзисторах.

2.2 Краткая характеристика полупроводниковых интегральных микросхем

Полупроводниковые ИС. В настоящее время различают два класса полупроводниковых ИС: биполярные ИС и МДП МС. Сочетание биполярных и МДП-транзисторов на одном кристалле является особым случаем.

Технология полупроводниковых ИС обоих классов основана на легировании полупроводниковой (кремниевой) пластины поочередно донорными и акцепторными примесями, в результате чего под поверхностью образуются тонкие слон с разным типом проводимости и р—n-переходы на границах слоев. Отдельные слои используются в качестве резисторов, а р—n-переходы — в диодных и транзисторных структурах.

Легирование пластины приходится осуществлять л о к а л ь н о, т. е. на отдельных участках, разделенных достаточно большими расстояниями1*. Локальное легирование осуществляется с помощью специальных масок с отверстиями, через которые атомы примеси проникают в пластину на нужных участках, При изготовлении полупроводниковых ИС роль маски обычно играет пленка двуокиси кремния SiO2, покрывающая поверхность кремниевой пластины. В.этой пленке специальными методами гравируется необходимая совокупность отверстий или, как говорят, необходимый рисунок (рис. 8). Отверстия в масках, в частности и окисной пленке, называют окнами.

Теперь кратко охарактеризуем составные части (элементы) двух основных классов полупроводниковых ИС.

Рис 8, Окисная маска с окнами дли локального легирования

Основным элементом биполярных ИС является п—р—п-транзистор: на его изготовление ориентируется весь технологический цикл. Все другие элементы должны изготавливаться, по возможности, одновременно с этим транзистором, без дополнительных технологических операннй. Так, резисторы изготавливаются одновременно с базовым слоем п—р—транзистора и поэтому имеют ту же глубину, что и базовый слой. В качестве конденсаторов используются обратносмещенные р—n-переходы, в которых слои соответствуют коллекторному слою п—р—n-транзнстора, и слою р— базовому.

Основным элементом МДП ИС является МДП-транзистор с индуцированным каналом. Роль резисторов выполняют транзисторы, включенные по схеме двухполюсника, а роль конденсаторов — МДП-структуры, у которых слой диэлектрика получается одновременно с подзатворным слоем транзистора, а полупроводниковая обкладка — одновременно со слоями истока и стока.

Элементы биполярной ИС необходимо тем или иным способом изолировать друг от друга с тем, чтобы они не взаимодействовали через кристалл. Методы изоляции элементов рассматриваются Элементы МДП ИС не нуждаются в специальной изоляции друг от друга, так как взаимодействие между смежными МДП-транзисторами не имеет места и их можно располагать на минимальном расстоянии друг от друга. В этом одно из главных преимуществ МДП ИС но сравнению с биполярным.

Характерная особенность полупроводниковых ИС состоит в том, что среди их элементов отсутствуют катушки индуктивности и тем более трансформаторы. Эго объясняется тем. Чти до сих пор не удалось использовать в твердом теле какое-либо физические явление, эквивалентное электромагнитной индукции. Поэтому при разработке ИС стараются реализовать необходимую функцию без использования индуктивности, что в большинстве случаев удается. Если же катушка индуктивности или трансформатор принципиально необходимы, их приходится использовать в виде навесных компонентов.

Размеры кристаллов у современных полупроводниковых ИС лежат в пределах от 1,5 X 1,5 мм до б X 6 мм. Чем больше площадь кристалла, тем боле*' сложную, более многоэлементную ИС можно на нем разместить. При одной н той же площади кристалла можно увеличить количество элементов, уменьшая их размеры и расстояния между ними.

Функциональную сложность ИС принято характеризовать степенью интеграции, т. е, количеством элементов (чаще всего транзисторов) ни. кристалле. В 1978—1979 гг. максимальная степень интеграции составляла (5—6) • 104 элементов на кристалле. Повышение степени интеграции (а вместе с нею и сложности функций, выполняемых ИС) — одна из главных тенденций в микроэлектронике.

Кроме степени интеграции, используют еще такой показатель, как плотность упаковки — количество элементов (чаще всего транзисторов) на единицу площади кристалла, Этот показатель, который характеризует главным образом уровень технологии, в настоящее время составляет до 500—1000 элементов/мм.


3. Расчёт полупроводниковых резисторов

3.1 Общие сведения об изготовлении полупроводниковых резисторов

Интегральные резисторы. В полупроводниковых микросхемах функцию резистора выполняет объем полупроводника, имеющий определенные размеры и конфигурацию, или транзисторная схема (аналог резистора). Интегральные резисторы могут быть разделены на следующие типы в зависимости от структуры: диффузионные (на основе эмиттерной или базовой области); эпитаксийльные (на основе коллекторной области); пинч-резкеторы, а также резисторы, изготовляемые методом ионного легирования. Все интегральные резисторы, кроме последнего из перечисленных типов, изготовляются одновременно с активными элементами микросхем без введения дополнительных этапов обработки. Они создаются на основе коллекторной, базовой или эмиттеркой областей транзистора.

Диффузионные резисторы. Диффузионные резисторы изготавливают одновременно с диффузией примесей, в процессе которой создаются базовые или эмнттерные области п-р-п-транзнстора. Сопротивление диффузионного резистора представляет собой объемное сопротивление участка диффузионного слоя, ограниченного р-п-переходом. Оно определяется геометрическими размерами резистивной области и распределением примеси по глубине диффузионного слон, которое, в свою очередь, характеризуется удельным поверхностным сопротивлением R*- Значение Rsявляется конструктивным параметром резистора, зависящим от технологических факторов (режима диффузии). Типичные значения сопротивлении диффузионных резисторов, которые можно получить при данном значении R лежит в пределах 4/?6</?< <1()4^. Нижний предел ограничивается сопротивлением контактны* областей, которое должно быть значительно меньше сопротивления основной области резистора. В качестве контактирующего металла используется алюминий. Верхний предел ограничивается допустимой площадью, отводимой под резистор. Чаще всего резисторы выполняются на основе базовой области 100—300 Ом. В этом случае и качестве резистора используется область n-типа (рис 9, а). К слою n-типа прикладывается положительный потенциал, смещающий р-n-переход в обратном направлении. Обратносмещенный переход, обладающий большим сопротивлением, определяет границы диффузионной области и обеспечивает развязку по постоянному току между резистором и подложкой. На основе базового диффузионного слояможно получать резисторы с номиналами сопротивлений от 100 Ом до 60 кОм.

Рис. 9. Структуры диффузионных резисторов, a — резистор на основе базовой области; 6 — резистор на основе эмиттерцой области

Для резисторов с номиналами от 3 до 100 Ом целесообразно использовать эмиттерный диффузионный слой (рис, 10), поскольку значение R%эмиттерного слоя невелико R — 10 Ом.

Пинч-резисторы. При необходимости создания высокоомных резисторов с сопротивлением более 60 кОм используют пинч-резнеторы (канальные, сжатые или закрытые). Пинч-резнсторы могут создаваться на основе базового слоя или коллекторного. представлена конструкция пкнч-резистора на основе базового слоя, ограниченного по тол шиле эмиттерным слоем n+ -типа. Резистор представляет собой тонкий канал р-типа. используется донном, слаболегированная часть базовой области с R,=:2— 5 кОм/П. изолированная со всех сторон обратносмещенным р-n-переходом, так как эмиттерный слой n-тмпа За пределами резистора соединяется с зпитаксиальным n-слоем изолированной области. Максимальное сопротивление таких резисторов составляет 200—300 кОм при простейшей полосковой конструкции. На рис. 5.6, б приведена конструкция пинч-резистора на основе коллекторной области, поперечное сечение которого уменьшено на глубину базового слоя (L, = 4—8 кОм). Для получения качественного омического контакта используют диффузионные n+ -области, которые создают на стадии эмиттернон диффузии, пинч-резисторы имеют большой разброс номиналов (до 50%) из-за трудностей получения точных значений толщины донной части, сопротивление их сильно зависит от температуры вследствие малой степени легирования областей, на основе которых они выполняются.