Смекни!
smekni.com

Связной однополосный радиопередатчик (стр. 2 из 6)

Выбор синтезатора частот

При выборе СЧ необходимо руководствоваться следующими соображениями:

- обеспечение синтеза частот с шагом сетки 200 Гц;

- контроль «захвата» частоты должен производиться системой фазовой автоподстройки частоты (ФАПЧ);

- осуществление быстрого перехода на дежурный канал связи;

- хранение номера последнего канала связи в режиме с низким током потребления;

- возможность программирования СЧ через последовательный канал и считывание служебной информации из внешнего электрически программируемого постоянного запоминающего устройства (ЭППЗУ);

- для удобства пользователя необходимо обеспечить визуальное отображение номера канала связи на индикаторе.

Всем вышеуказанным требованиям удовлетворяет микросхема программируемого частотного синтезатора АК9601 [9], которая используется в системах связи с цифровым синтезом частот, может работать в 2-х режимах задания данных:

1) служебная информация считывается из ПЗУ с интерфейсом I2C типа КР1568РР1 (256х8), КР1568РР2 (1024х8) или им подобным (каждому каналу отводится 8 байт);

2) служебная информация записывается микроконтроллером по последовательной шине I2С.

Структурная схема СЧ АК9601 приведена на рисунке ниже. Назначение выводов схемы приведено в таблице 1.

Рис.2. Структурная схема синтезатора частоты АК9601


Таблица 1.

№ вывода Обозначение Назначение Тип
1 Х0 Выводы опорного генератора для подключения кварцевого резонатора (Fкв=6..10 МГц) Выход
2 Х1 Вход
3..10 LCD…LCD7 Выводы для управления сегментами мультиплексного жидкокристаллического индикатора (ЖКИ) Выход
11,12 СОМ1, СОМ2 Выводы мультиплексации сегментов ЖКИ Выход
13 Ucc Вывод питания -
14 ТХ/СЕ Вывод для управления режимами работы «приём-передача» и «рабочий-хранение» Вход
15 +/- Вывод для изменения канала связи Вход
16 TS/DEG Вывод для перехода на дежурный канал связи Вход
17 ZB Вывод для одного из 2-х сигналов: служебного сигнала (для коммутации при переходе на другой диапозон) или сигнала признака «захвата» частоты системой ФАПЧ Выход с открытым стоком
18 SMEM Вывод для включения питания ЭППЗУ на время считывания информации Выход с открытым стоком
19 VCO Вход программируемого делителя системы ФАПЧ, на который подаётся сигнал с ГУНа Вход
20 SDA Вывод для подключения к линии данных шины I2C Вход/выход с открытым стоком
21 SCL Вывод для подключения к линии синхронизации I2C Вход/выход с открытым стоком
22 ER Вывод сигнала ошибки с ФД системы ФАПЧ и затвора встроенного N-канального транзистора для построения инвертирующего интегратора Вход/выход с третьим состоянием
23 DRV Вывод стока встроенного транзистора для построения инвертирующего интегратора Вход/выход с открытым стоком
24 Uss Общий вывод -

Кварцевый резонатор для синтезатора частот выберем на 10 МГц. Подключать его следует через конденсаторы, включенные на землю.

Генератор управляемый напряжением (ГУН) выполним по схеме, приведенной в [3]. Генератор имеет цепи точной и грубой настройки, которые содержат варикапы, элементы цепей смещения и блокировки. Сопротивление блокировочных конденсаторов на рабочей частоте пренебрежимо мало по сравнению с выходным сопротивлением источника управляющего напряжения. Варикап VD1 осуществляет точную настройку частоты автогенератора. Грубая перестройка частоты в общем случае может быть и плавной при плавном изменении напряжения на варикапе VD2.. Наличие двух разделительных цепей управления частотой при использовании ГУНа в кольце фазовой АПЧ в синтезаторе частоты позволяет обеспечить постоянство усиления в кольце фазовой АПЧ при перестройке частоты генератора в широком диапазоне частот. Ниже приведена схема автогенератора с перестройкой частоты.

Рис.3.

Выбор частот для синтезатора частот:

Гц,
Гц,
МГц.

Таблица 2.

То есть комбинационные составляющие не попадают в диапазон ФНЧ: 1.6..6 МГц.


Расчет выходного каскада радиопередатчика

В оконечном каскаде радиопередатчика необходимо усилить имеющийся сигнал до заданной мощности при этом проходная характеристика транзистора должна быть линейной и угол отсечки коллекторного тока θ=90º (невыполнение этих требования приводит к нелинейным искажениям).

В данном случае целесообразно оконечный каскад выполнить по двухтактной схеме, что позволяет при отдаче транзисторами мощности меньшей повысить надежность устройства; а также при использовании данной схемы подавляются четные гармоники на 15-20 дБ, следовательно уменьшится порядок ФНЧ необходимого для подавления внеполосного излучения. Так как каскад является широкополосным, то выберем в качестве схемы связи генератора с нагрузкой ТДЛ.

Выбор транзистора оконечного каскада

Для выходного каскада однополосного радиопередатчика, как сказано выше, необходимо выполнить двухтактную схему, в которой транзисторы должны быть идентичны. Для выбора транзистора необходимо руководствоваться следующими условиями:

- транзистор должен отдавать необходимую мощность в нагрузку;

- так как передатчик однополосный, то необходимо, чтобы проходная характеристика была линейной.

Как правило, для генерации заданной мощности в нагрузке в определенном диапазоне частот можно подобрать целый ряд транзисторов. Из группы транзисторов нужно выбрать тот, который обеспечивает наилучшие электрические характеристики усилителя мощности.

Коэффициент полезного действия каскада связан с величиной сопротивления насыщения транзистора – rНАС. Чем меньше его величина, тем меньше остаточное напряжение в граничном режиме и выше КПД генератора.

Коэффициент усиления по мощности КР зависит от ряда параметров транзистора: коэффициента передачи тока базы bо, частоты единичного усиления fT и величины индуктивности эмиттерного вывода LЭ . При прочих равных условиях КР будет тем больше, чем выше значение b о , f T и меньше LЭ.

1) По мощности подходят следующие транзисторы:

2Т944А, 2Т947А, 2Т956А, 2Т957А, 2Т964А, 2Т967А, 2Т971А, 2Т980А, 2Т9126А;

2) из них подходят по частоте:

2Т944А (rНАС=0.19 Ом), 2Т956А (rНАС=0.35 Ом), 2Т957А (rНАС=0.1 Ом), 2Т980А (rНАС=0.5 Ом);

3) сравнивая их по параметру, определяющему КПД (по rНАС) выберем транзистор 2Т957А. У выбранного транзистора линейная проходная характеристика, что обеспечивает усиление однополосных колебаний с малым уровнем нелинейных искажений [1,3].

Параметры идеализированных статических характеристик:

Сопротивление насыщения транзистора rНАС=0.1 Ом;

Коэффициент усиления по току в схеме с ОЭ βо=28;

Остаточное напряжение Eотс=0.7В.

Высокочастотные параметры:

Граничная частота усиления по току в схеме с ОЭ fт=100 МГц;

Барьерная емкость коллекторного перехода Ск=520 пФ;

Барьерная емкость эмиттерного перехода Сэ=1500 пФ;

Индуктивность вывода базы Lб=2.2 нГн;

Индуктивность вывода эмиттера Lэ=1.4 нГн;

Индуктивность вывода коллектора Lк=2 нГн.

Допустимые параметры

Предельное напряжение на коллекторе Uкэ доп=60 В;

Обратное напряжение на эмиттерном переходе Uбэ доп=4 В;

Постоянная составляющая коллекторного тока Iко макс. доп=20А;

Диапазон рабочих частот 1.5..30 МГц.

Энергетические параметры (экспериментальные характеристики при работе в условиях, близких к предельно допустимым по какому-либо признаку (параметру) и ограничивающих мощность транзистора так, чтобы гарантировать достаточную надежность его работы)

Максимально допустимая мощность P'н=125 Вт;

Граничная частота f' =30 МГц;

Коэффициент усиления по мощности К'р=17;

Коэффициент полезного действия η'=50 %;

Напряжение питания Е'к=28 В.

Режим работы линейный, <-33 дБ.

В современных передатчиках мощные оконечные усилители строятся, как правило, на транзисторах по двухтактной схеме с ОЭ.

Число транзисторов в усилительном модуле m=2. При выбранном КПД цепи связи с фидером

определим мощность на выходе модуля:

Вт.

Следовательно, мощность на выходе одного плеча двухтактной схемы определится как:

Вт.