Смекни!
smekni.com

Радиолокационное устройство предупреждения аварийных ситуаций при движении по трассе (стр. 3 из 7)

c’= f00U =cU (9)

Изменение длины волны в ИСО движущегося наблюдателя – есть своего рода коэффициент преломления для света. По аналогии со стеклом: частота света в стекле не меняется, меняется длина волны – она уменьшается, поэтому скорость света в стекле в n раз меньше, чем в воздухе; выйдя из стекла скорость света вновь обретает прежнее значение.

Движущийся наблюдатель из-за увеличения длительности его секунды измерит частоту как

f’ = f0/U, (10)

длину волны как

' = 0U (11)

Скорость света у движущегося наблюдателя

f’’ = c (12)

Т.е. движущийся наблюдатель считает, что и у него скорость света такая же, что и у покоящегося, и он вправе считать своего оппонента движущимся, а себя покоящимся. До тех пор, пока они не обменяются числами частот. Мы видим, что в данном случае скорость света в движущейся ИСО сохранила только численное значение с.
2. Наблюдатель движется навстречу покоящемуся источнику.
Скорость пришедшего к наблюдателю света согласно теории и преобразованиям Лоренца должна быть с, не численно, а абсолютно! Посмотрим какие ограничения должны сопутствовать такому движению света? По мнению покоящегося наблюдателя, входящая в ИСО движущегося наблюдателя частота меняется как

f’= f0(1+B), (13)

длина волны соответственно

' = 0/(1+B) (14)

из-за эффекта Доплера.

Что должен измерить движущийся наблюдатель? Если бы у движущегося наблюдателя длительность секунды не менялась от скорости движения, то он измерил бы частоту как (13) и длину волны как (14), т.е. скорость света у него физически не изменилась бы. На самом деле происходит следующее: из-за увеличения длительности секунды он получит входящую частоту как

f’ = f0(1+B)/U (15)

Т.е. частота у него растёт больше чем от эффекта Доплера. Для сохранения произведения длина волны должна соответственно уменьшаться:

’= 0U/(1+B) (16)

Но чем мы должны её мерить? Укороченным в U раз метром? Самое смешное заключается в том, что все авторы, освещающие теорию относительности, утверждают, что сокращение размеров тел есть реальный эффект. Измеряя укороченным метром укороченную длину волны мы не достигаем укорочения!

Длина волны должна сокращаться в U раз, во столько же раз и сокращается линейка, а частота при этом может расти до бесконечности. В результате, определяя скорость света как произведение частоты на длину волны, можно получать скорость больше с. Поэтому длина линейки не должна меняться от относительной скорости ИСО. Только измеряя длину волны нормальной линейкой, можно заметить дополнительное укорочение волны.

Таким образом, мы доказали, что никакого сокращения продольных размеров тел быть не может! Как не может быть скорость света одной и той же! Попутно я докажу и это утверждение.

Движущийся навстречу источнику, наблюдатель измерит частоту как: (13), длину волны как: (14). Скорость света соответственно:

C’ = f’’ = C (17)

Но может быть она действительно одна и та же? Оказывается – нет!

Движущийся наблюдатель получил только одинаковое численное значение скорости света, поскольку его секунда в Г раз длиннее его неподвижного оппонента и частоту он завысил в Г раз. Поэтому, если его секунду привести ко времени неподвижного наблюдателя, то частота уменьшится в Г раз и скорость света станет такой, какой ей и надлежит быть: CU. Замечу, что я веду рассуждения в рамках СТО. Я не изменил ни одной формулы.

Таким образом, скорость света никоим образом не может быть одной и той же во всех ИСО. Сохраняется только численное значение скорости света. Из этого рассуждения следует: скорость света в ИСО относительна по всем направлениям, а не только в перпендикулярном направлении; никакого сокращения тел в продольном направлении быть не должно. Да его и нет, потому что ни в каком опыте его не обнаружили.

Итак, мы подошли к финалу наших рассуждений: на одном движущемся наблюдателе убили двух зайцев – во-первых, доказали, что скорость света не может быть везде одной и той же, и во-вторых, как следствие первого, никакого сокращения продольных размеров тел в природе нет и быть не должно.

3. Наблюдатель удаляется от источника:

f0(1-B)/U 0U/(1-B) = C (18)

Здесь добавить уже нечего, поэтому я привожу только формулу для удаляющегося наблюдателя. Скорость света у движущегося наблюдателя численно одинакова со всех направлений и равна С. Т.е. число не зависит от скорости наблюдателя!

4. Рассмотрим движение источника: Источник движется мимо покоящегося наблюдателя, т.е. свет к нему приходит с перпендикулярного направления.

Сначала рассмотрим наблюдателя, движущегося с источником. Он считает, что скорость света у него с по всем направлениям, поэтому он берёт эталонный переход атома с частотой f0 и длиной волны 0 и посылает сигнал покоящемуся наблюдателю. Длина волны одинаковых переходов одинаковых атомов у всех наблюдателей должна быть одинакова. Далее, покоящийся наблюдатель считает, что скорость света в источнике не с, а cU, т.е. частота излучения из-за замедления времени не f0 а f0U. Эту частоту он и измеряет, тем самым подтверждая поперечный эффект Доплера. Какую длину волны измерит покоящийся наблюдатель? Выйдя из источника, скорость света возрастает до с, следовательно, покоящийся наблюдатель измерит длину волны как 0/U. Что опять же подтверждается в поперечном эффекте, правильнее сказать не Доплера, а Эйнштейна. Для покоящегося наблюдателя скорость света составит:

f0U0/U = C

5. Источник движется к покоящемуся наблюдателю. Наблюдатель, движущийся с источником, считает, что частота его излучения вперёд, за пределами его ИСО, меняется как

f’ = f0/(1-B) (19)

и длина волны соответственно как

’ = 0(1-B) (20)

Покоящийся наблюдатель, измеряя частоту, из-за замедления времени найдёт, что она равна

f’ = f0U/(1-B) (21)

а длина волны

’ = 0(1-B)/U) (22)

С этой частотой и длиной волны свет распространяется, покидая ИСО источника.

Приведу формулы для удаляющегося источника:

f’ = f0U/(1+B) (23)

’= 0(1+B)/U) (24)

Мы видим, что произведения частоты на длину волны во всех случаях одинаковы и равны с, как внутри источника и наблюдателя, так и снаружи. Выше я уже сказал, что частота и длина волны определённых переходов атомов во всех ИСО должна быть численно одинакова и не зависеть от направления измерения. Этого можно добиться только если длины линеек не зависят от направлений. Тогда длины волн будут везде одинаковы, а изменение частоты будет компенсироваться удлинением секунды. В результате и численное значение частот будет везде одинаковым.

Внутри ИСО движущегося наблюдателя и движущегося источника скорость света относительна и сохраняет лишь одинаковое численное значение скорости света. За пределами ИСО скорость света возрастает до своего абсолютного значения, поэтому свет от двойных звёзд приходит к нам одновременно, независимо от направлений движения звёзд.

В теории относительности отрицательный результат опытов типа Майкельсона – Морли трактуется как доказательство независимости скорости света от движения наблюдателя. Одинаковость скорости света от двойных звёзд трактуется как независимость скорости света от движения источника. Но за счёт чего достигнута эта независимость, какие коррективы в движение света необходимо внести, чтобы обеспечить эту независимость? – теория Эйнштейна этого не сделала. На самом деле всё обстоит несколько иначе и анализ эффекта Доплера подтверждает это.

Исходя из технических требований, радар, использующийся в этой системе, должен удовлетворять следующим техническим требованиям:

1. дальностью сканирования порядка 600 метров

2. погрешностью определения скоростей ±5 км/ч

3. возможностью работы в различных климатических условиях

Таким образом остановим свой выбор на устройстве подобного рода. Проанализировав рынок микроэлектроники, самым подходящим для этих целей прибором , на мой взгляд является универсальный доплеровский радар, применяемый сотрудниками ГИБДД, «ИСКРА-1». Он удовлетворяет всем требованиям и, кроме того, имеет еще ряд дополнительных преимуществ. Вот некоторые сведения о нем.

Измеритель скорости движения транспортных средств «И С К Р А – 1» разработан по заказу зарегистрирован в Государственном НИЦ ГАИ МВД РФ Реестре средств измерений #16561-97 при участии ВНИИФТРИ Сертификат Госстандарта #2963 от 1 октября 1997 г.

Работает на удвоенной частоте

- надежно определяет скорость автомобилей с низкой отражающей способностью

- стабильно работает в условиях дождя и снегопада

- имеет уникально малый вес и габариты

- выделяет самую быструю цель в потоке

Научно-Производственное Предприятие Системы Микроволнового Контроля г. Санкт-Петербург обратил внимание на следующие его положительные свойства:

- две ячейки памяти для хранения данных о скорости двух целей одновременно;

- встроенный таймер на 10 минут для каждой ячейки памяти;

- возможность работы в непрерывном или импульсном режиме;

- установка порога для фиксации только скорости нарушителей;

- моноблочная конструкция;

- звуковая сигнализация превышения порога скорости;

- выделение скоростной цели в потоке;

- высокое быстродействие.

Прибор обладает следующими тактико-техническими данными:

- дальность действия, не менее, м 300

- диапазон измеряемых скоростей, км/ч 30-180

- рабочая частота, ГГц 24.15 +/- 0.1

- погрешность измерения скорости, км/ч +/- 2

- время измерения скорости, не более, с 1

- время хранения информации при фиксации превышения порога скорости, не менее, мин 9

- число целей, информация о которых может храниться в памяти 2

- напряжение питания, В 11-16

- средняя потребляемая мощность, не более, Вт 8

- масса, не более, кг 0.9