Смекни!
smekni.com

Расчет самолетной радиолокационной станции (стр. 1 из 2)

Министерство образования и науки Российской Федерации

ГОУ ВПО УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ - УПИ

Кафедра «Радиотехнических систем»

Курсовая работа

Тема: Расчет самолетной радиолокационной станции

Курсовая работа

по дисциплине "Теоретические основы радиолокации"

Преподаватель Полежаев В.Л.

Студентка Тухветова К.С.

Группа Р-439

Екатеринбург, 2006


Содержание

Задание

1 Обоснование, выбор и расчет тактико-технических характеристик радиолокационной станции. Оценка параметров цели. Максимальная дальность действия. Определение параметров излучения

2 Описание обобщённой структурной схемы РЛС

Заключение

Список литературы


Задание

Необходимо разработать структурную схему РЛС, параметры которой будут удовлетворять техническому заданию. Рассчитать тактико-технические характеристики радиолокационной станции, выбрать недостающие технические и тактические характеристики, обосновать их выбор. В результате необходимо получить следующие параметры РЛС:

1. ЭПР цели.

2. Параметры излучения:

· длина волны

· параметры внутриимпульсной модуляции (ЛЧМ, ФМН, нет)

· длительность импульса

· количество и когерентность импульсов в пачке

· мощность излучения (с учетом влияния земли и затухания в атмосфере).

3. Скорость обзора заданного сектора.

4. Структурная схема РЛС (передающий и приемный тракт).

Техническое задание на проектирование .

1. Назначение – самолетная РЛС

2. Вид цели – гражданский самолёт

3. Максимальная дальность до цели Rmax = 103м;

4. минимальная высота цели Hmin = 100 м;

5. Максимальная высота цели, Hmax = 10000 м

6. Разрешающая способность по дальности: две цели на расстоянии 0.5 линейного размера

7. Сектор обзора в горизонтальной плоскости, .Daобз = 1800;

8. Вероятность правильного обнаружения, Рпр = 0,999;

9. Вероятность ложной тревоги,Рлт = 10-7;

1 Обоснование, выбор и расчет тактико-технических характеристик радиолокационной станции

1) Оценка параметров цели.

Вид цели – гражданский самолет. Выбираем среднее значение эффективной отражающей площади Sэфф=15 м2 (из таблицы 2.2 [1] ), линейный размер цели l=40 м. Высоту полета самолетной РЛС примем равной 5000 м (так как высота цели может меняться от 100 м. до 10 км.).

2) Максимальная дальность действия. Максимальной дальностью действия РЛС называется расстояние между станцией и целью, на котором сигналы цели обнаруживаются с заданной вероятностью правильного обнаружения Рпр и ложной тревоги Рлт

Определим максимальную наклонную дальность из условий взаимного расположение РЛС и цели. Получаем, что Rmax =

.

3) Разрешающую способность РЛС по дальности.

Разрешающая способность РЛС по дальности

Разрешающая способность по дальности - минимальная дальность между двумя целями, имеющими угловые одинаковые координаты, при которой метки от них на экране индикатора видны раздельно.

4) Определение параметров излучения.

a) Выбираем РЛС импульсного некогерентного типа. ( выбор обусловлен относительно малой дальностью действия и отсутствием требований к измерению и разрешению по скорости.)

b) Выберем в качестве зондирующего сигнала простой сигнал с базой равной 1 (радиоимпульсы с прямоугольной огибающей).

Выбор длительности и частоты следования импульсов производится из условия однозначного измерения параметров целей на максимальной дальности.

- Из разрешающей способности РЛС по дальности определяем длительность импульса:

2∆D/с=

- Период следования импульсов определяется из максимальной наклонной дальности до цели:

- Тогда частота следования зондирующих импульсов равна:

- Определим скважность:

Поскольку в данной РЛС не важна разрешающая способность по скорости цели, то и нет необходимости использовать сложные сигналы. Их использование будет обоснованным, если при использовании обычных импульсных сигналов величина импульсной мощности РЛС превысит величину 100 МВт.

c) Рассчитаем необходимую величину отношения сигнал/шум.

Наш принимаемый сигнал характеризуется случайными изменениями фазы и амплитуды. В этом случае имеет место ухудшение характеристик обнаружения по сравнению с полностью известным сигналом. Предполагая, что закон распределения начальной фазы сигнала равномерный в пределах от 0 до 2π, а распределение амплитуды подчинено закону Релея, можно получить:

При большой вероятности правильного обнаружения и малой вероятности ложной тревоги (как в нашем случае) для обнаружения флуктуирующего сигнала требуется достаточно большая его энергия.

Используются схемы оптимальных приемников, которые включают: фильтр, согласованный с принимаемым сигналом, амплитудный детектор и пороговое устройство. Согласованный фильтр обеспечивает максимальное отношение пикового значения напряжения сигнала к среднеквадратическому значению напряжению шума. Такие устройства называют амплитудными обнаружителями.

5) Обоснование, выбор и расчет технических характеристик РЛС.

1) Режим работы РЛС.

Проектируемая радиолокационная станция работает в импульсном режиме. Сигнал – некогерентные прямоугольные импульсы.

2) Длина волны l.

Диапазон волн, применяемый в радиолокационной технике, лежит в области метровых, дециметровых, сантиметровых и миллиметровых волн. От длины волны РЛС зависят размеры антенной системы при требуемых значениях диаграммы направленности и коэффициента направленного действия антенны. Применение более коротких волн при тех же размерах антенны позволяет улучшить разрешающую способность.

При выборе длины волны необходимо учитывать поглощающие и рассеивающие действия гидрометеоров и атмосферы, возможность получения необходимой мощности от передатчика и обеспечения требуемой чувствительности приемника.

В диапазонах сантиметровых и особенно миллиметровых волн интенсивное поглощение электромагнитных колебаний вызывает нежелательное уменьшение дальности действия станции. Кроме того, гидрометеоры в этих диапазонах могут являться источником интенсивного отражения, затрудняющего и полностью исключающего наблюдение целей.

Выбор длины волны должен производиться с учетом особенностей РЛС и влияния длины волны на ее тактические характеристики.

Наоборот, для РЛС ближнего действия, как правило, важны высокая точность отсчета угловых координат и разрешающая способность. В таких случаях выгодно использовать сантиметровые, а иногда и миллиметровые волны, поскольку при общем небольшом радиусе действия станции затухание электромагнитных волн в атмосфере будет сказываться еще не слишком сильно.

Для оценки длинны волны РЛС, обратимся к рисунку 11.1 [1], на котором приведены зависимости требуемой энергии передатчика от длины волны.


Для дальности действия 5100 м. оптимальное значение длины волны, при котором требуемая энергия излучаемых колебаний достигает минимума,

.

При большей длине волны необходимая энергия излучения будет увеличивается относительно медленно, а при уменьшении длинны волны – возрастет очень быстро. Поэтому выбираем длину волны

3) Рабочая частота f.

Рабочая частота находится исходя из длины волны l=0.02м

4) Ширина диаграммы направленности по уровню половинной мощности.

Для удобства обычно рассматривают отдельно диаграмму направленности в горизонтальной плоскости и диаграмму направленности в вертикальной плоскости. При этом обращают внимание на ширину диаграммы направленности q0.5.

Ширина диаграммы направленности антенны влияет на дальность радиолокационного наблюдения. По мере сужения диаграммы направленности антенны увеличивается ее коэффициент направленного действия и возрастает максимальная дальность действия РЛС.

Длина волны и геометрические размеры антенны определяют ширину диаграммы направленности антенны РЛС

.