регистрация / вход

Разработка блока управления электромеханическим замком

Министерство образования и науки Республики Беларусь Белорусский Государственный университет информатики и радиоэлектроники Факультет компьютерного проектирования

Министерство образования и науки Республики Беларусь

Белорусский Государственный университет

информатики и радиоэлектроники

Факультет компьютерного проектирования

Кафедра РЭС

К защите допускаю

"__"_______ 2001 г.

Руководитель проекта

________Смирнова Н.А.

Пояснительная записка

к курсовому проекту на тему:

Разработка блока управления

электромеханическим замком.

Разработал: ст. гр. 710205

Грибанский Д.Ю.

Приняла: Смирнова Н.А.

Минск 2001


СОДЕРЖАНИЕ

Введение...............................................................................................................

1 Разработка технического задания............................................................................

2 Анализ исходных данных и основные технические требования к

разрабатываемой конструкции...............................................................................

2.1 Анализ существующих разработок.................................................................

2.2 Анализ климатических факторов.....................................................................

2.3 Анализ дестабилизирующих факторов...........................................................

2.4 Анализ электрической схемы...........................................................................

3 Выбор и обоснование элементной базы, унифицированных узлов,

установочных изделий и материалов конструкции..............................................

3.1 Выбор и обоснование элементной базы..........................................................

3.2 Выбор материалов конструкции......................................................................

4 Выбор и обоснование компоновочной схемы, методов и принципа

конструирования.......................................................................................................

4.1 Выбор компоновочной схемы..........................................................................

4.2 Выбор и обоснование метода и принципа конструирования........................

5 Выбор способов и средств теплозащиты, герметизации, виброзащиты и

экранирования...........................................................................................................

5.1 Выбор способов охлаждения на ранней стадии проектирования.................

5.2 Выбор способов и методов герметизации.......................................................

5.3 Выбор способов и методов экранирования.....................................................

5.4 Выбор способов и методов виброзащиты.......................................................

6 Расчет конструктивных параметров изделия.........................................................

6.1 Компоновочный расчет блоков РЭС...............................................................

6.2 Расчет теплового режима..................................................................................

6.3 Расчет конструктивно-технологических параметров печатной платы.

Выбор и обоснование методов изготовления печатной платы.....................

6.4 Расчет механической прочности и системы виброударной защиты............

6.5 Полный расчет надежности..............................................................................

6.6 Расчет технологичности

7 Обоснование выбора средств автоматизированного проектирования................

7.1 Применение ЭВМ и САПР в курсовом проектировании..............................

7.2 Перечень и содержание конструкторских работ, выполненных с применением САПР................................................................................................

8 Анализ и учет требований эргономики и технической эстетики.........................

9 Мероприятия по защите от коррозии, влаги, электрического удара,

электромагнитных полей и механических нагрузок...........................................

10 Технико-экономическое обоснование конструкции...........................................

11 Охрана труда и экологическая безопасность......................................................

Заключение..........................................................................................................

Литература...........................................................................................................

Приложение.........................................................................................................

Аннотация

В данном курсовом проекте было предложено разработать блок управления электромеханическим замком на электронных ключах, позволяющий контролировать доступ в помещения и разработать техническое задание на него.

В курсовом проекте был произведен анализ существующих, а также обзор отечественных и зарубежных разработок. Был произведен подробный анализ климатических и дестабилизирующих факторов и анализ электрической схемы, приведен принцип работы разрабатываемого блока и его основные технические параметры.

В соответствии с заданием на курсовое проектирование произведен выбор и обоснование метода и принципов конструирования, методов изготовления печатных плат, способа охлаждения на ранних стадиях проектирования, способа и методов герметизации, экранирования и виброзащиты, а также произведен выбор компоновочной схемы. В проекте выполнены также: компоновочный расчет блоков РЭС, расчет теплового режима, расчет конструктивно-технологических параметров печатных плат, расчет механической прочности и системы виброударной защиты, расчет электромагнитной совместимости, расчет лицевой панели блока управления, полный расчет надежности и расчет показателей технологичности. Рассмотрены мероприятия по защите от коррозии, влаги, электрического удара, электромагнитных полей и механических нагрузок и приведено технико-экономическое обоснование конструкции.

Введение

Конструирование РЭС - сложный творческий процесс, не имеющий пока строгой всеохватывающей математической базы и ведущийся методом многочисленных проб и последовательных приближений. Этот процесс больше искусство, чем наука, хотя решение многих проблем конструирования основано на использовании строгого математического алгоритма, расчета тепловых режимов, прочности, различных допусков. Поэтому незначительные на первый взгляд погрешности или приближения, допущенные на ранних стадиях разработки РЭС, могут стать причиной крупных ошибок в дальнейшей работе.

Широкое использование радиоэлектронной аппаратуры в различных областях науки и техники приводит к необходимости обеспечения высокой надёжности её работы при разнообразных климатических и механических воздействиях. Трудность выполнения данного требования связана с различным назначением РЭС, местом её установки и условиями эксплуатации. Об уровне надёжности принято судить по способности РЭС безотказно работать в течении заданного времени в определённых условиях. Поэтому для оценки степени соответствия РЭС предъявляемым к ней требованиям осуществляют технический контроль и испытание на всех этапах конструирования и производства. Полученная при этом информация о качестве работы РЭС и о причинах её отказов совместно с данными реальной эксплуатации позволяет принять своевременные меры по совершенствованию схемы и конструкции, а так же технологии производства.

Правильно организованный технический контроль и испытания способствуют значительному повышению надёжной работы РЭС. В связи с этим особую актуальность приобретают радиотехнические устройства, предназначенные для испытания и контроля, посредством которых проверяется работоспособность и пригодность к эксплуатации различного оборудования и приборов.

В последние годы с развитием электроники усложняется радиоаппаратура. Характерен переход от отдельных радиоаппаратов к сложным комплексам и системам. Однако создание подобной аппаратуры ставит перед её разработчиками различные проблемы: веса, объёмов и габаритов; надёжности и долговечности; производства и серийности; экономики. Для преодоления этих проблем необходимо их комплексное решение на общей технической базе. Такой базой в настоящее время является комплексная механизация с применением микроэлектроники, внедрением унификации и стандартизации. Разработка схемы конструкции и технологии становится единым процессом создания аппаратуры. Отработка серийной способности каждого изделия начинается с момента его зарождения и продолжается в процессе его производства.

Данный дипломный проект в учебном плане подготовки завершает цикл конструкторских и технологических дисциплин. Задача проекта состоит в том, чтобы, используя знания, полученные при изучении данных дисциплин научиться создавать и моделировать конструкции радиоэлектронной аппаратуры различного назначения, обеспечивая совместимость с объектом установки и с оператором, с учётом патентной чистоты и патентоспособности; обеспечивать надёжность конструкций по четырем составляющим - безотказности, долговечности, сохранности и ремонтоспособности. Всё это должно органически перенестись в единое целое в данном курсовом проекте.

Современный этап научно-технического прогресса характеризуется массовым распространением микропроцессорной техники. Она настолько широко распространилась во всех областях народного хозяйства, что трудно представить, как обойдутся без нее все процессы автоматизации и управления. Применение ОМЭВМ, реализующих на одной БИС функции ввода-вывода, хранения и обработки данных, позволяет достигать максимальной простоты и дешевизны систем управления. Одним из возможных вариантов применений ОМЭВМ можно считать использование их для систем охранно-пожарных сигнализаций и контроля доступа в помещения.

Использование в системах контроля доступа в помещения кодовой последовательности, обрабатываемой ОМЭВМ, полностью исключает подбор кода, а возможность подключения в качестве исполнительного устройства релейного замка с курковым механизмом взвода ригеля обеспечивает надежную фиксацию двери, что гарантирует достаточно надежную защиту от взлома. Существует, однако, и более надежный способ защиты – установка централизованной системы охранно-контрольнной сигнализации. Однако главное препятствие для их широкого внедрения – это необходимость наличия телефонного номера на объекте охраны и недостаток соответствующего оборудования у правоохранительных органов, что и не позволяет решать проблему массовой охраны квартир и служебных помещений. Поэтому в дипломном проекте будет разработан блок управления электромеханическим замком на электронных карточках, позволяющий контролировать доступ в помещение.


1 Разработка технического задания

1.1 Наименование и область применения

1.1.1 Блок управления электромеханическим замком.

1.1.2 Областью применения блока является управление доступом в помещение посредством электромеханического замка (COMMAX, ABLOY, CISA).

1.1.3 Предусматривается использование изделия на производстве.

1.2 Основание для разработки

1.2.1. Основанием для разработки является программа курса КиА РЭУ для ВУЗов по специальности Т08.01, утвержденная Министерством образования Республики Беларусь 1995г.

1.2.2. Тематическая карточка на разработку не предусматривается.

1.3 Цель и назначение разработки

1.3.1 Целью разработки является создание блока управления электромеханическими релейными замками с курковым механизмом взвода ригеля и пусковым током не более 1.0 А при напряжении 12 В, отвечающего современным требованиям.

1.3.2 Назначение разработки - создание конструктивно законченного устройства.

1.3.3 Разработка должна обеспечить создание базовой модели блока управления замком электромеханическим.

1.3.4 Дальнейшее развитие разработки должно выполняться путем создания модификаций базовой модели, отличающихся элементной базой и другими показателями.

1.3.5 Блок управления (БУ) замком электромеханическим предназначен для работы при температурах от минус 10 до плюс 40°С, относительной влажности воздуха до 80% и атмосферном давлении от 84 до 106 кПа

1.3.6 Изделие предназначено для мелкосерийного изготовления.

1.4 Источники разработки

1.4.1. Источниками разработки является схема электрическая принципиальная блока управления замком электромеханическим.

1.5 Технические требования

1.5.1 Состав изделия и требования к конструктивному исполнению устройства

1.5.1.1 БУ должен содержать следующие составные части:

· Модуль базовый;

· Модуль процессорный;

· Модуль световой и звуковой индикации.

1.5.1.2 БУ должен изготавливаться в соответствии с требованиями ГОСТов, соответствовать требованиям настоящего ТЗ, ТУ и комплекта конструкторской документации.

1.5.1.3 Принцип построения блока управления замком электромеханическим должен обеспечивать:

¾ взаимозаменяемость сменных одноименных составных частей;

¾ ремонтопригодность.

1.5.1.4 По внешнему виду блок должен соответствовать опломбированному и утвержденному образцу.

1.5.1.5 Габаритные размеры корпуса блока должны быть не более, м :

длина – 0,185;

ширина – 0,135;

высота – 0,08.

1.5.1.6 Масса блока без источника резервного питания должна быть не более 3 кг.

1.5.1.7 Конструкция блока должна обеспечивать:

¾ удобство эксплуатации;

¾ возможность ремонта;

¾ доступ ко всем элементам, узлам, требующим регулирования или замены в процессе эксплуатации.

1.5.1.8 Структура блока и его конструктивное выполнение должны обеспечивать объединение составных частей в единый базовый конструктив.

1.5.1.9 Блок должен быть работоспособным при электропитании от однофазной сети переменного тока номинальным напряжением 220В и частотой переменного тока 50 Гц, при этом нормы качества электрической энергии при электропитании от государственной энергетической системы - по ГОСТ 13109-67.

1.5.1.10 Электрическая прочность изоляции блока управления замком электромеханическим между токоведущими цепями, а также между токоведущими цепями и корпусом в нормальных климатических условиях эксплуатации должна обеспечивать отсутствие пробоев и поверхностных перекрытий изоляции.

1.5.1.11 По устойчивости к воздействию температуры и влажности окружающей среды блок интерфейсных адаптеров должен соответствовать климатическому исполнению к категории размещения УХЛ 4.2 по ГОСТ 15150-69.

1.5.1.12 Для антикоррозионной защиты поверхность деталей, сборочных единиц и блока в целом применять гальванические и лакокрасочные покрытия.

1.5.1.13 Корпус должен быть изготовлен из листовой стали.

1.5.1.14 Корпус, передняя панель и другие детали наружной поверхности блока должны иметь защитное покрытие и не иметь дефектов, портящих внешний вид изделия (вмятин, следов коррозии, царапин, трещин и других механических повреждений).

1.5.1.15 Блок должен эксплуатироваться в производственных помещениях категории Д по СНиП 11-90-81.

1.5.2 Показатели назначения

1.5.2.1 БУ предназначен для управления доступом в помещения.

1.5.2.2 БУ предназначен для подключения к электромеханическими релейными замками с курковым механизмом взвода ригеля и пусковым током не более 1.0 А при напряжении 12 В.

1.5.2.3 Потребляемая мощность блока, Вт не более 2.

1.5.2.3 Питание блока от однофазной сети переменного тока напряжением 220В±10% частоты 50±0,5Гц с возможностью работы от источника резервного питания напряжением 12В.

1.5.3 Требования к надежности

1.5.3.1 Блок по обеспечению надежности должен удовлетворять требованиям ОСТ4.205.029-83.

1.5.3.2 Показатели должны соответствовать заданным значениям при нормальных климатических условиях (температура окружающей среды плюс 20°С, относительная влажность 60 %, атмосферное давление (84...1037) 102 Па); с отклонениями напряжения сети 220В от плюс 10% до минус 15% от номинального значения, частотой (50±1) Гц.

1.5.3.3Средняя наработка на отказ, ч, не менее 20000.

1.5.3.4Вероятность безотказной работы 0,9.

1.5.3.5Среднее время восстановления, ч 1.

1.5.3.6 Блок должен выдерживать воздействия внешних механических и климатических факторов в соответствии с ГОСТ 11478-88 для 1 группы аппаратуры.

1.5.3.7 После восстановления работоспособности, по окончании ремонтно-восстановительных работ, изделие должно сохранять показатели назначения, изложенные в настоящем документе.

1.5.4 Требования к технологичности и метрологическому обеспечению разработки

1.5.4.1 Параметры блока управления замком электромеханическим должны контролироваться с помощью стандартных измерительных приборов обслуживающим персоналом средней квалификации.

1.5.4.2 Требования к технологичности должны соответствовать ГОСТ 14.201-83.

1.5.4.3 Конструкция изделия должна обеспечивать возможность выполнения монтажных работ с соблюдением требований технических условий на установку и пайку комплектующих изделий.

1.5.4.4 Конструкция изделия в целом и отдельных сложных узлов должна обеспечивать сборку при изготовлении без создания и применения специального оборудования.

1.5.4.5 При изготовлении блока управления замком электромеханическим должны применяться стандартные методы и универсальные средства измерений, серийное испытательное оборудование. Допускается для проведения климатических проверок при технологическом прогоне применять специально приготовленную камеру или специально оборудованное оборудование.

1.5.4.6 Конструкция блока должна обеспечивать его сборку и монтаж при подготовке к эксплуатации без применения специального оборудования, приспособлений и инструмента.

1.5.4.7 Трудоемкость изготовления устройства - не более 5 часов.

1.5.4.8 Конструкция блока должна соответствовать требованиям ремонтопригодности по Р50-84-88.

1.5.5 Требования к уровню стандартизации и унификации

1.5.5.1 В качестве комплектующих единиц и деталей (коммутационные, изделия электроники, крепежные, установочные) должны применяться серийно выпускаемые изделия.

1.5.5.2 Сборочные единицы типа монтажных плат, панелей, крепежных и установочных узлов должны быть унифицированными.

1.5.5.3 В конструкции блока должны быть заимствованы сборочные единицы, узлы и детали из ранее разработанных изделий.

1.5.5.4 Коэффициент унификации стандартных и заимствованных деталей должен быть не менее 0,5.

1.5.6 Требования безопасности и требования по охране природы

1.5.6.1 Конструкцией блока управления замком электромеханическим должна быть обеспечена безопасность персонала при эксплуатации. Общие требования электрической и механической безопасности по ГОСТ 12.2.007.0-75 и ГОСТ 25861-83.

1.5.6.2 По способу защиты человека от поражения электрическим током блок должен быть изготовлен в соответствии с требованиями ГОСТ 12.2.007-75 и ГОСТ 25861-83. Класс защиты - 1.

1.5.6.3 Меры защиты от поражения электрическим током должны соответствовать требованиям ГОСТ 25861-83 и ГОСТ 12.1.019-75.

1.5.6.4 В блоке управления замком электромеханическим должна быть обеспечена защита от коротких замыканий.

1.5.6.5 Общие требования к обеспечению пожарной безопасности в производственных помещениях по ГОСТ 12.1.004-85.

1.5.6.6 Конструкция устройства должна исключать возможность неправильного присоединения его сочленяемых токоведущих и составных частей.

1.5.6.7 В качестве основного источника питания должна применяться сеть переменного тока частотой 50 Гц и напряжением 220 В, в качестве резервного источника питания – аккумулятор напряжением 12В, со временем автономной работы не менее 36ч.

1.5.6.8 Присоединительные разъемы электрических цепей должны быть снабжены надписями, соответствующими их принадлежности и назначению.

1.5.6.9 Коммутационные изделия, устанавливаемые в цепях повышенного напряжения, должны быть конструктивно выделены и не должны одновременно коммутировать другие цепи.

1.5.6.10 Конструкция устройства должна исключать попадание внутрь посторонних предметов.

1.5.6.11 В эксплуатационных документах по требованиям техники безопасности должны быть соблюдены правила технической эксплуатации электроустановок потребителем и правила техники безопасности при эксплуатации электроустановок потребителем.

1.5.7 Эстетические и эргономические требования

1.5.7.1 Блок по своим эргономическим показателям должен обеспечивать удобство эксплуатации.

1.5.7.2 Органы индикации должны быть расположены с достаточным обзором.

1.5.8 Требования к патентной чистоте

1.5.8.1 Патентная чистота блока должна быть обеспечена в отношении стран СНГ и стран - возможных импортеров изделия.

1.5.9 Условия эксплуатации, требования к техническому обслуживанию и ремонту

1.5.9.1 Блок управления замком электромеханическим должен быть выполнен для климатического исполнения УХЛ 4.2 согласно ГОСТ 15150-69 и нормально функционировать при следующих климатических условиях:

¾ верхнее значение температуры окружающей среды, °С плюс 35;

¾ нижнее значение температуры окружающей среды, °С плюс 10;

¾ относительная влажность воздуха при температуре плюс 20°С, % 60.

1.5.9.2 Предельно допустимые условия эксплуатации блока должны соответствовать:

¾ верхнее значение температуры окружающей среды, °С плюс 40;

¾ нижнее значение температуры окружающей среды, °С плюс 1;

¾ относительная влажность воздуха при температуре плюс 25°С, % 80;

¾ атмосферное давление, кПа (мм рт.ст.) 84,0...107,0 (630...800).

1.5.9.3 Время подготовки блока к эксплуатации после транспортировки и хранения не должно превышать 1 часа.

1.5.9.4 Рабочий режим в блоке должен устанавливаться не более чем через 1 минуту после включения.

1.5.9.5 Ремонт блока должен производиться в специализированной ремонтной организации или по месту эксплуатации высококвалифицированным радиомехаником.

1.5.10 Требования к маркировке и упаковке

1.5.10.1 Маркировка блока управления замком электромеханическим должна соответствовать требованиям ГОСТ 26828-86.

1.5.10.2 Маркировку выполняют любым способом. Способ и качество выполнения маркировки должно обеспечивать четкое и ясное изображение ее в течении срока службы блока.

1.5.10.3 Маркировка устройства и входящих составных частей должна содержать :

- товарный знак или наименование предприятия-изготовителя;

- полное торговое наименование по ГОСТ 26794-85;

- порядковый номер изделия и составных частей;

- необходимые поясняющие и предупреждающие надписи, выполненные по ГОСТ 12.2.006-87.

- дату изготовления.

1.5.10.4 Упаковка должна быть выполнена в виде картонного ящика с пенопластовыми вкладышами.

1.5.10.5 На таре должны быть нанесены манипуляционные знаки "Боится сырости", "Соблюдение интервала температур", по ОСТ14192-77 и знак высоты штабелирования по ОСТ4.ГО.417.209-82.

1.5.10.6 Упаковка должна обеспечивать сохранность изделия при погрузочно-разгрузочных работах, транспортировании, хранении и необходимую защиту от внешних воздействий.

1.5.10.7 Каждое изделие в упаковке должно фиксироваться в транспортной таре.

1.5.10.8 При поставке изделия на экспорт все надписи выполняются на языке, оговоренном в договоре на поставку.

1.5.11 Требования к транспортированию и хранению

1.5.11.1 Упакованные изделия перевозить только в закрытом транспорте.

1.5.11.2 Требования к виду транспорта не предъявляются.

1.5.11.3 Условия транспортирования изделия в таре для транспортирования должны соответствовать следующим требованиям:

¾ температура окружающего воздуха, °С ±50;

¾ относительная влажность воздуха при плюс 30°С, % 95;

¾ атмосферное давление, кПа (мм рт.ст.) 84,0...107,0 (630...800).

1.5.11.4 Размещение и крепление упакованных изделий в транспортных средствах должно обеспечивать их устойчивое положение, исключить возможность ударов их друг о друга.

1.5.11.5 Блок управления замком электромеханическим должен храниться в упаковке в складских помещениях у изготовителя и потребителя при температуре воздуха от плюс 5 до плюс 35°С и относительной влажности воздуха не более 85 %. В помещениях для хранения не должно быть агрессивных примесей (паров, кислот, щелочей), вызывающих коррозию.

1.5.11.6 Расстояние между стенами, полом хранилища и изделием должно быть не менее 100 мм, а между отопительными устройствами не менее 0,5 м.

1.6 Экономические показатели

1.6.1 Срок окупаемости блока должен быть не более 3 лет.

1.6.2 Предполагаемый годовой выпуск до 1 тыс. штук в год.

1.7 Порядок контроля и приемки

1.7.1 Для приемки работы на этапе проведения испытаний необходимо представить три образца блока управления замком электромеханическим.

1.7.2 Испытания должны проводиться по программе и методике испытаний.

1.7.3 Для приемки представляются следующие документы:

- техническое задание;

- комплект конструкторской документации;

- ведомость покупных изделий;

- программа и методика испытаний;

- эксплуатационные документы;

- методики проверки.

1.7.4 Приемочные испытания проводит разработчик, приемосдатчик, изготовитель.

1.7.5 Приемочные испытания опытного образца производятся в сроки, согласованные с заказчиком.

1.7.6 В случае несоответствия основных параметров блока, его отправляют в ремонт. После ремонта проводят проверку и настройку блока.


2 Анализ исходных данных и основные технические требования к разрабатываемой конструкции

2.1 Анализ существующих разработок

В связи со спецификой объекта разработки, информация по этой теме публиковалась только в литературе служебного пользования или с грифом “секретно”. Поэтому в обзоре существующих разработок будут использованы материалы открытых выставок, которые в течение ряда лет производятся в г. Минске под девизом “Безопастность. Крименалистика. Правопорядок.”.

Прежде чем произвести обзор систем, рассмотреть их основные достоинства и недостатки, дадим определение электронного замка.

Электромеханический замок (в дальнейшем ЭМЗ) -совокупность совместно действующих технических средств для управления доступом в помещение.

2.1.1 Обзор отечественных разработок

Замок кодовый электронный ЗКЭ-4-10

Структурная схема этой системы приведена на рисунке 2.1.1


Рисунок 2.1.1 – Структурная схема электромеханического замка

На рисунке 2.1.1 приняты следующие аббревиатуры:

УК – устройство кодовое. Предназначено для хранения кодовой последовательности;

УЗ – устройство запирающее;

КК – ключ кодовый. Содержит: кодонобиратель (клавиатура) и сигнальную лампу.

Главный недостаток данной системы – это то, что она предназначена для внутренних помещений и обеспечивает фиксацию двери только в одной точке. К существующим недостаткам устройства можно отнести так же ограниченное количество вариантов кода (5040) и большое энергопотребление.

2.1.2 Обзор зарубежных разработок

Электронный кодовый замок Smart Guard Plus

Достоинства:

- использование в наружных дверях;

- индивидуальное программирование времени и полномочий доступа для каждого из 900 пользователей;

- идентифицирование пользователя по уникальному 48-разрядному коду персонального электронного ключа Touch Memory.

Недостатки:

- сравнительно высокая стоимость для отечественных потребителей;

- обеспечивает фиксацию двери в одной точке.

Таких же недостатков не лишен и автономный комплекс контроля доступа в помещение Smart Latch.

Особенно высокая стоимость, наряду с отсутствием аналогичных отечественных систем, сдерживает внедрение зарубежных систем для контроля доступом в помещение.

2.2 Анализ климатических факторов

Изделия должны сохранять свои параметры в пределах норм, установленных техническими заданиями, стандартами или техническими условиями в течение сроков службы и сроков сохраняемости, указанных в техническом задании после или в процессе воздействия климатических факторов, значения которых установлены ГОСТ 15150-69.

Изделия предназначают для эксплуатации в одном или нескольких макроклиматических районах и изготавливают в различных климатических исполнениях.

Разрабатываемое устройство предназначено для эксплуатации в районах с умеренным и холодным климатом.

К макроклиматическому району с умеренным климатом относятся районы, где средняя из абсолютных максимумов температура воздуха равна или ниже плюс 40 °С, а средняя из ежегодных абсолютных минимумов температура воздуха равна или выше минус 45 °С.

К макроклиматическому району с холодным климатом относятся районы, в которых средняя из ежегодных абсолютных минимумов температура воздуха ниже минус 45 °С.

Исходя из вышесказанного, блок управления замком электромеханическим будет изготавливаться в климатическом исполнении УХЛ.

Следует отметить, что изделия в исполнении УХЛ могут эксплуатироваться в теплом влажном, жарком сухом и очень жарком сухом климатических районах по ГОСТ 16350-80, в которых средняя из ежегодных абсолютных максимумов температура воздуха выше плюс 40 °С, и сочетание температуры, равной или выше О °С, и относительной влажности, равной или выше 80%, наблюдается более 1 часов в сутки за непрерывный период более двух месяцев в году.

Изделия в различных климатических исполнениях в зависимости от места размещения при эксплуатации в воздушной среде на высотах до 4300 м изготавливают по категориям размещения изделий.

Разрабатываемый блок управления замком электромеханическим предназначен для эксплуатации в помещениях (объемах) с искусственно регулируемыми климатическими условиями, например, в закрытых отапливаемых или охлаждаемых и вентилируемых производственных и других помещениях (отсутствие воздействия атмосферных осадков, прямого солнечного излучения, ветра, песка, пыли наружного воздуха, отсутствие или существенное уменьшение воздействия рассеянного солнечного излучения и конденсации влаги), а конкретнее - в лабораторных, капитальных жилых и других подобного типа помещениях. Следовательно, блок управления замком электромеханическим относится к категории исполнения 4.2.

Нормальные значения климатических факторов внешней среды при эксплуатации изделий принимают равными следующим значениям:

верхнее рабочее значение температуры окружающего

воздуха при эксплуатации, °С +35;

нижнее рабочее значение температуры окружающего

воздуха при эксплуатации, °С +10;

¾ верхнее предельное рабочее значение температуры

окружающего воздуха при эксплуатации, °С +40;

¾ нижнее предельное рабочее значение температуры

окружающего воздуха при эксплуатации, °С +1;

¾ величина изменения температуры окружающего воздуха

за 8 ч., °С 40;

верхнее значение относительной влажности при температуре

плюс 25 °С, % 80;

¾ среднегодовое значение относительной влажности при

температуре плюс 20 °С, % 60;

среднегодовое значение абсолютной влажности, гм 10;

верхнее рабочее значение атмосферного

давления, кПа (мм рт. ст.) 106,7 (800);

¾ нижнее рабочее значение атмосферного давления,

кПа (мм рт. ст.) 86,6 (650);

¾ нижнее предельное рабочее значение атмосферного

давления, кПа (мм рт. ст.) 84,0 (630).

Указанное верхнее значение относительной влажности воздуха нормируется также при более низких температурах; при более высоких температурах относительно влажность ниже.

Так как нормированное верхнее значение относительной влажности 80%, то конденсация влаги не наблюдается.

Содержание в атмосфере на открытом воздухе коррозионно-активных реагентов:

сернистый газ, мг/м, не более 0,025;

хлориды, мг/м, не более 0,00035.

Содержание коррозионно-активных реагентов в атмосфере помещений категории 4 в 2-5 раз меньше указанного и устанавливается на основании измерений, но так как данные измерений отсутствуют, то содержание коррозионно-активных агентов принимаем равным 30 % указанного.

За нормальные значения факторов внешней среды при испытаниях изделия (нормальные климатические условия испытаний) принимаются следующие:

температура, °С +25±10%;

относительная влажность воздуха, % 45...80;

атмосферное давление, мм рт. ст. 630...800.

Так как блок управления замком электромеханическим предназначен для работы в нормальных условиях, в качестве номинальных значений климатических факторов указанные выше принимают нормальные значения климатических факторов указанные выше.

За эффективную температуру окружающей среды (при тепловых расчетах) принимается максимальное значение температуры.

За эффективные значения сочетания влажности и температуры при расчетах параметров изделия, изменение которых вызывается сравнительно длительными процессами, принимаются среднемесячные значения сочетаний влажности и температуры в наиболее теплый и влажный период (с учетом продолжительности их воздействия ).

За эффективные значения концентрации агрессивной среды принимают среднее логарифмическое значение содержания коррозионно-активных реагентов, соответствующего данному типу атмосферы.

За эффективное значение давления воздуха принимается среднее значение давления.

Группа условий эксплуатации по коррозионной активности для металлов и сплавов без покрытий, а также с неметаллическими и неметаллическими неорганическими покрытиями - 1.

Группа условий эксплуатации в зависимости от климатического исполнения к категории размещения изделия (УХЛ 4.2) - 1.

Условия хранения изделий определяются местом их размещения, макроклиматическим районом и типом атмосферы и характеризуется совокупностью климатических факторов, воздействующих при хранении на упакованные или законсервированные изделия. Согласно ГОСТ 15150-69, для проектируемого изделия удовлетворительными являются условия хранения в отапливаемых и вентилируемых складах, хранилищах с кондиционированием воздуха, расположенных в любых макроклиматических районах.

Обозначения такого хранилища: основное - 1, буквенное - Л, текстовое “отапливаемое хранилище”. Климатические факторы, характерные для данных условий хранения:

температура воздуха, °С +5...+40;

максимальное значение относительной влажности

воздуха при температуре плюс 5 °С, % 80;

среднегодовое значение относительной влажности

воздуха при температуре плюс 20 °С, % 60;

пылевое загрязнение незначительно;

действие солнечного излучения, дождя, плесневых грибков отсутствует.

Условия транспортирования данного изделия являются такими же, как и условия хранения. Транспортировка осуществляется в закрытых транспортных средствах, где колебания температуры и влажности воздуха несущественно отличаются от колебаний на открытом воздухе.

Климатические факторы, характерные для данных условий транспортировки:

температура воздуха, °С ±50;

¾ максимальное значение относительной влажности

воздуха при температуре минус 50 °С, % 100;

- среднегодовое значение влажности воздуха при

температуре + 20 °С, % 60;

пылевое загрязнение незначительно.

2.3 Анализ дестабилизирующих факторов

По ГОСТ 11478 - 88 аппаратуру в зависимости от условий эксплуатации подразделяют на 4 группы. Разрабатываемое устройство относится к группе 1 (условия эксплуатации - в лабораторных, капитальных жилых и других подобных помещениях).

На аппаратуру этой группы действуют следующие дестабилизирующие факторы:

синусоидальные вибрации;

различные механические воздействия при транспортировке;

пониженная и повышенная температура среды;

повышенная влажность воздуха;

воздействие пыли.

Для того чтобы выяснить, как поведет себя аппаратура при воздействии этих факторов, а также для проверки соответствия ее установленным в техническом задании требованиям, проводят испытания аппаратуры на воздействие внешних механических и климатических факторов.

Испытания, проводимые для данной группы аппаратуры и значения механических и климатических факторов, которые она должна выдерживать, указаны в ГОСТ 11478-88.

При испытании на воздействие пониженной температуры среды и повышенной влажности в ТЗ на аппаратуру допускается по согласованию с заказчиком устанавливать значения рабочей пониженной температуры и относительной влажности, отличное от указанных в ГОСТ 11478-88.

При испытании на воздействие пониженной температуры среды и повышенной влажности в ТЗ на аппаратуру допускается по согласованию с заказчиком устанавливать значения рабочей пониженной температуры и относительной влажности, отличное от указанных в ГОСТ 11478-88.

Испытания рекомендуется проводить на одних и тех же образцах аппаратуры в следующей последовательности:

механические испытания;

испытание на воздействие повышенной температуры среды;

испытание на воздействие повышенной влажности;

испытание на воздействие пониженной температуры среды.

Испытания на воздействие пыли и на прочность при падении рекомендуется проводить на образцах аппаратуры, которые не подвергались испытаниям других видов.

Испытание включает следующий ряд операций, проводимых последовательно:

начальная стабилизация (если требуется);

начальные проверки и начальные измерения (если требуется);

выдержка;

конечная стабилизация (если требуется);

¾ заключительные проверки и измерения (если требуется).

До и после испытания значения параметров и характеристик должны соответствовать требованиям для нормальных климатических условий, установленных в стандартах на аппаратуру.

Аппаратуру считают выдержавшей испытание, если:

не нарушена сохранность внешнего вида;

¾ после испытания характеристики и параметры аппаратуры соответствуют требованиям, установленным в стандартах или ТУ на аппаратуру и в ПИ для испытаний данного вида.

2.4 Анализ электрической схемы

В данной работе поставлена задача разработки только одного блока системы контроля доступа в помещение (СКДП) - электронного блока управления (ЭБУ). Однако для анализа исходных данных необходимо рассмотреть систему в целом. Схема электрическая структурная ЭБУ приведена в приложении В.

Замок электромеханический предназначен для ограничения доступа в охраняемые помещения и может эксплуатироваться как автономно, так и в составе охранных устройств и устройств "электронный вахтер". Замок является врезным дверным замком и устанавливается непосредственно в саму дверь.

Система разработана по модульному принципу и включает в себя следующие блоки:

- блок управления (БУ);

- электромеханическое запирающее устройство – исполнительный механизм (ЭЗУ);

- электронные карточки-ключи.

Блок управления STEGO 01.010, в дальнейшем БУ, предназначен для управления релейными замками с курковым механизмом взвода ригеля с пусковым током не более 1.0 А при напряжении 12 В. Управление замками осуществляется посредством электронных карточек таблеточной конструкции DS1990, DS1992, DS1994 фирмы DALLAS (США).

БУ обладает функциями автономной охраны двери, что обеспечивается подключением стандартного магниточувствительного дверного датчика и внешнего звукового или светового оповещателя.

БУ состоит из следующих составных функциональных частей:

- электронный блок управления (ЭБУ);

- накладка внешняя;

- накладка внутренняя;

ЭБУ и накладки выполнены в виде самостоятельных конструктивных единиц, что позволяет в зависимости от планировки помещения, типа дверей и т.п. устанавливать эти составные части по месту.

Электронный блок управления , является основной частью БУ, выполнен в разборном металлическом корпусе. На передней панели блока установлены светодиодные индикаторы сети и наличия аккумулятора резервного питания. Для питания ЭБУ используется сетевое напряжение 220В или аккумулятор резервного питания напряжением 12В.

Электронный блок управления осуществляет все необходимые функции, связанные с запоминанием и опознаванием ключей, индикацией режимов, выдачей сигналов управления на ЭЗУ.

В корпусе ЭБУ располагаются:

- базовый модуль;

- модуль световой и звуковой индикации;

- микропроцессорный модуль.

Микропроцессорный модуль управляет режимами работы БУ, принимает и обрабатывает сигналы ключей, датчика, кнопок, обеспечивает хранение кодов ключей, выдает сигналы управления замком, оповещения и тревоги.

Базовый модуль обеспечивает:

- формирование напряжений необходимых для работы БУ, исполнительного реле замка, выносного звукового или светового оповещателя;

- автоматическую подзарядку и подключение аккумулятора резервного питания, при пропадании напряжения сети;

- согласование модуля контроллера с внешними устройствами;

- усиления сигналов управления замком, индикации, оповещения и тревоги.

Блок управления устанавливается в помещении, в удобном для доступа месте, но не далее 10 м от двери.

Накладка внешняя , конструктивно оформлена в декоративном металлическом корпусе и содержит: плату с контактным устройством ключей и светодиодным индикатором режимов, вызывную кнопку.

Устанавливается на внешней стороне двери и закрепляется посредством двух винтов со стороны внутренней накладки.

Накладка внутренняя , конструктивно оформлена в декоративном металлическом корпусе и содержит кнопку открывания замка и коммутационную переходную плату для подключения накладки внешней, магниточувствительного датчика и ЭБУ.

Электронные карточки выполняют функцию ключей и представляют из себя электронную схему, встроенную в герметичный корпус таблеточной конструкции. Каждая карточка имеет записанный в ней индивидуальный 48 разрядный код, который не может быть изменен. Большое число комбинаций кодов исключает возможность их подбора и повторения

Кроме обычных карточек, которые пользователь может приобретать независимо, замок комплектуется специальной карточкой (" мастер-ключ" ) посредством которой осуществляется задание режимов работы БУ, а также программирование и стирание кодов ключей.

Производитель карточек - американская фирма "DALLAS" гарантирует их безотказную работу в течение 10 лет.

Электромеханическое запирающее устройство, является исполнительным механизмом замка. В качестве ЭЗУ используется механизм с курковым механизмом взвода ригеля с пусковым током не более 1.0 А при напряжении 12 В (таких марок как COMMAX, CISA, ABLOY).

Схема электрическая принципиальная ЭБУ приведена в приложении В.

2.4.1 Основные технические параметры

- количество электронных карточек-ключей, программируемых в память БУ - 32;

- режим программирования и стирания ключей - списковый, избирательный;

- максимальный пусковой ток управления замком, при напряжении 12 В, не более, А - 1,5;

- напряжение питания - ( 220 ± 22)В;

- потребляемая от сети мощность в дежурном режиме, не более, Вт - 1,5;

- максимальная мощность подключаемого выносного звукового или светового оповещателя, не более В·А-4,0;

- резервный источник питания - аккумулятор 1,2 А·ч; (автоматические подключение и подзарядка);

- время автономной работы с резервным источнком

питания ч, не менее 36;

- габаритные размеры БУ, не более, мм 185х135х80;

- масса БУ без резервного источника питания, не более, кг 3.

2.4.2 Принцип работы

Работа ЭБУ предполагает:

- формирование и выдачу сигналов управления замком;

- запись и хранение кодов электронных карточек-ключей;

- стирание кодов ключей, утративших полномочия;

- задание и отмену режимов работы;

- обработку сигналов дверного датчика;

- управление оповещателями в режиме охраны.

Принцип работы БУ основан на использовании в качестве ключей электронных карточек, каждая из которых имеет свой уникальный код. Обработка, запись и стирание кодов, а также управление всеми режимами работы БУ осуществляется микроконтроллером ЭБУ. Передача кодов с электронной карточки на микроконтроллер осуществляется при касании ею контактного устройства по командам микроконтроллера. Коды ключей, обладающих полномочиями на управление БУ записываются в энергонезависимую память ЭБУ и сохраняются при полностью обесточенном устройстве не менее 10 лет. Поскольку, микроконтроллер осуществляет только чтение кодов электронных карточек, полностью исключена возможность внешнего несанкционированного доступа к записанным кодам ключей и вмешательства в режимы работы БУ.

Установка режимов, запись и стирания карточек осуществляется посредством специальной карточки - "мастер-ключ", входящей в комплект замка. Каждый БУ имеет единственный "мастер- ключ".

Открывание замка с внутренней стороны осуществляется нажатием кнопки внутренней накладки, или выносной кнопки.

БУ выдает звонковый сигнал посещения, при нажатии кнопки внешней накладки.

Светодиодный индикатор контактного устройства индицирует состояние замка/двери. Цвет индикатора меняется с красного на зеленый при открывании замка. Обратная смена цвета произойдет только при открывании и последующем закрывании двери.

В режиме охраны встроенный звуковой оповещатель БУ выдает длинные прерывистые сигналы оповещения, при незакрытой двери более 20 сек. При несанкционированном открывании двери (без предъявления электронной карточки, нажатия внутренней кнопки) звуковой оповещатель выдает непрерывные короткие звуковые сигналы и осуществляет выдачу сигналов на внешний световой или звуковой оповещатель мощностью не более 4 В·А с частотой 1 Гц. Отключение сигналов тревоги возможно только запрограммированным ключом.

Светодиоды на передней панели ЭБУ индицируют наличие сети и аккумулятора резервного питания:

- красный и зеленый - есть сеть, есть аккумулятор;

- только красный - есть сеть, нет аккумулятора;

- отсутствие свечения обоих индикаторов - нет сети.

В последнем случае о наличии аккумулятора можно судить по свечению индикатора контактного устройства.

БУ не предназначен для эксплуатации в помещениях для хранения активно действующих химикатов, а также в помещениях, содержащих пыль и примеси, вызывающие коррозию металлических частей и повреждение электрической изоляции.


3 Выбор и обоснование элементной базы, унифицированных узлов, установочных изделий и материалов конструкции

3.1 Выбор и обоснование элементной базы

Выбор элементной базы проводится на основе схемы электрической принципиальной с учетом требований изложенных в техническом задании. Эксплуатационная надежность элементной базы во многом определяется правильным выбором типа элементов при проектировании (блока управления замком электромеханическим) и использовании в режимах, не превышающие допустимые. Следует отметить, что ниже рассматриваются допустимые режимы работы и налагаемые при этом ограничения в зависимости от воздействующих факторов лишь с точки зрения устойчивой работы самих элементов, не касаясь схемотехники и влияния параметров описываемых элементов на другие элементы.

Влияние Э.Д.С. шумов, коэффициентов нелинейности, паразитных емкости и индуктивности и др., должны учитываться дополнительно исходя из конкретных условий применения.

Для правильного типа элементов необходимо на основе требований к установке в части климатических, механических и др. воздействий проанализировать условия работы каждого элемента и определить:

эксплуатационные факторы (интервал рабочих температур, относительную влажность окружающей среды, атмосферное давление, механические нагрузки и др.);

значения параметров и их допустимые изменения в процессе эксплуатации (номинальное значение, допуск, сопротивление изоляции, шумы, вид функциональной характеристики и др.);

- допустимые режимы и рабочие электрические нагрузки (мощность, напряжение, частота, параметры импульсного режима и т.д.);

- показатели надежности, долговечности и сохраняемости;

Критерием выбора электрорадиоэлементов (ЭРЭ) в любом радиоэлектронном устройстве является соответствие технологических и эксплуатационных характеристик ЭРЭ заданным условиям работы и эксплуатации.

Основными параметрами при выборе ЭРЭ являются:

а) технические параметры:

- номинальное значение параметров ЭРЭ согласно принципиальной электрической схеме устройства;

- допустимые отклонения величин ЭРЭ от их номинального значения;

- допустимое рабочее напряжение ЭРЭ;

- допустимое рассеивание мощности ЭРЭ;

- диапазон рабочих частот ЭРЭ;

- коэффициент электрической нагрузки ЭРЭ.

б) эксплуатационные параметры:

- диапазон рабочих температур;

- относительная влажность воздуха;

- давление окружающей среды;

- вибрационные нагрузки;

- другие (специальные) показатели.

Дополнительными критериями при выборе ЭРЭ являются:

- унификация ЭРЭ;

- масса и габариты ЭРЭ;

- наименьшая стоимость;

- надежность.

Выбор элементной базы по вышеназванным критериям позволяет обеспечить надежную работу изделия. Применение принципов стандартизации и унификации при выборе ЭРЭ, а также конструировании изделия позволяет получить следующие преимущества:

- значительно сократить сроки и стоимость проектирования.

- сократить на предприятии‑изготовителе номенклатуру применяемых деталей и сборочных единиц, увеличить применяемость и масштаб производства.

- исключить разработку специальной оснастки и специального оборудования для каждого нового варианта РЭА, т.е. упростить подготовку производства.

- создать специализированное производство стандартных и унифицированных сборочных единиц для централизованного обеспечения предприятий.

- улучшить эксплуатационную и производственную технологичность.

- снизить себестоимость выпускаемого изделия.

Учитывая вышесказанное, перейдем к выбору элементной базы разрабатываемого блока управления электромеханического замка.

Схема электрическая принципиальная разрабатываемого блока управления приведена в приложении В.

Здесь применены:

- микросхемы КР561ТЛ1, КР142ЕН5А;

- процессор ЭКР1830ВЕ31;

- память D27С64;

- ППЗУ ЭКР1568РР1;

- регистр ЭК1554ИР22;

- резисторы С2-23-0,125, С2-23-0,5, С2-23-2;

- конденсаторы типа К50‑35, МО21;

- транзисторы КТ3102ГМ, КТ3107ГМ, КТ973А;

- диоды КД243, КД522А;

- светодиоды АЛ307;

- резонатор кварцевый на 4МГц;

- трансформатор;

- вставка плавкая ВП1-1;

- головка динамическая 0,5ГДШ – 2 – 8Ом.

Проведем сравнительную оценку заданных условий эксплуатации и допустимых эксплуатационных параметров ЭРЭ используемых в данных модулях.

Из справочной литературы имеем следующие данные об условиях эксплуатации аналоговых микросхем серии КР142:

- интервал рабочих температур

-20...+850 С

- многократное циклическое изменение температуры

-20...+850 С

- относительная влажность воздуха при температуре 200 С

до 98%

- атмосферное давление

0.67...31кПа

Сопоставляя заданные условия эксплуатации прибора и условия эксплуатации микросхем данной серии, заключаем, что выбранная серия микросхем пригодна для эксплуатации в данных условиях.

Из справочной литературы имеем следующие данные об условиях эксплуатации конденсаторов следующих типов:

а) для конденсаторов типа К50‑35:

- температура окружающей среды

-20...+700 С

- относительная влажность воздуха при 400 С

до 98%

- тангенс угла потерь при нормальных климатических условиях

15...40%

- атмосферное давление

от 0.67 до 31 кПа

- минимальная наработка при температуре 700 С

2000 часов

- срок сохраняемости

5 лет

б) конденсаторов типа М021:

- температура окружающей среды

от -60 до 1500 С

- относительная влажность воздуха при 350 С

до 98%

- атмосферное давление

от 10-6 до 800 мм.рт.ст.

- минимальная наработка

10000 часов

Сопоставляя условия эксплуатации прибора и условия эксплуатации предлагаемых типов конденсаторов, заключаем, что данные типы пригодны для эксплуатации в заданных условиях.

Из справочной литературы [19] имеем данные об условиях эксплуатации применяемых в устройстве транзисторов КТ3102:

- граничная частота при Vкб =5В, Iэ =10мА

не менее 900МГц

- постоянное напряжение Vкэ при Rэб <3кОм

15В

- постоянный ток коллектора

30мА

- температура окружающей среды

от 213 до 398К

- рассеиваемая мощность при Т=213...338К, р<665Па

150мВт

- при Т=398К

60мВт

Из справочной литературы имеем следующие данные об условиях эксплуатации резисторов типа С2-23:

- интервал рабочих температур

-60...+1550 С

- относительная влажность воздуха при температуре 400 С

до 98%

- давление окружающей среды, мм. рт.ст.

5...2280

Сопоставляя заданные условия эксплуатации прибора и условия эксплуатации резисторов, заключаем, что выбранный тип пригоден для эксплуатации в данных условиях.

Из справочной литературы [18] имеем следующие данные об условиях эксплуатации диодов типа КД522:

- интервал рабочих температур

-60...+1250 С

- относительная влажность воздуха при температуре 200 С

до 98%

- давление окружающей среды, мм.рт.ст.

5...800

Сопоставляя заданные условия эксплуатации прибора и условия эксплуатации диодов, заключаем, что выбранный тип пригоден для эксплуатации в данных условиях.

Сопоставление характеристик остальных ЭРЭ (микросхем, диодов, транзисторов, и т.д.), используемых в модулях замка, с условиями эксплуатации, позволяет заключить, что названные ЭРЭ пригодны для эксплуатации в заданных условиях.

Сравнительный анализ по использованию элементной базы в данных модулях согласно предложенной схеме электрической принципиальной показал соответствие эксплуатационных и технических характеристик ЭРЭ заданным условиям эксплуатации.

В результате сопоставления условий эксплуатации разрабатываемого прибора и условий эксплуатации применяемых в нем ЭРЭ провели выбор элементной базы. Выбранная элементная база является унифицированной.

3.2 Выбор материалов конструкций

Выбор материалов конструкций разрабатываемого изделия проводим согласно требованиям, изложенным в ТЗ.

Материалы конструкций должны обладать следующими свойствами:

- иметь малую стоимость;

- легко обрабатываться;

- быть легким;

- обладать достаточной прочностью и легкостью;

- внешний вид материала кожуха, лицевой и задней панелей должен отвечать требованиям ТЗ;

- сохранять свои физико-химические свойства.

Применение унифицированных материалов конструкций, ограничения номенклатуры применяемой детали позволяет уменьшить себестоимость разрабатываемого изделия, улучшить производственную и эксплуатационную технологичность.

Сохранение физико-химических свойств материалов в процессе их эксплуатации достигается выбором для них необходимых покрытий. При выборе покрытий для материалов конструкций необходимо руководствоваться рекомендациями и требованиями изложенными в ГОСТ9.303‑84 и ОСТ4ГО.014.000. Изготовление деталей конструкции типовыми технологическими операциями также позволяет снизить затраты при серийном выпуске изделия в промышленности. При изготовлении РЭА наиболее широкое применение нашли следующие технологические операции:

- штамповка;

- точечная электросварка;

- и другие.

Для разрабатываемого прибора, учитывая программу выпуска целесообразно применение деталей, изготовленных штамповкой.

Холодная штамповка относится к наиболее прогрессивным способам изготовления заготовок деталей из листа и ленты вырубкой, вытяжкой, проколкой, гибкой, раздачей и т.д. Однако целесообразность её применения определяется рядом условий и прежде всего серийностью выпуска изделия, конфигурацией детали, механическими свойствами материала, требуемой точностью изготовления детали.

Детали из листового материала в наиболее общем виде можно разделить на плоские, гнутые и объемные (полые), а соответствующие операции холодной штамповки - на вырубку гибку и вытяжку. Плоские заготовки, получаемые холодной штамповкой, основанные на резании материалов (отрезка, вырубка, пробивка, надрезка, зачистка и т.п.), можно изготовлять из всех металлов и их сплавов, а также из многих неметаллических материалов. Гнутые и объемные (полые) детали, получаемые пластическим деформированием материалов целесообразнее изготовлять из материалов со сравнительно малым пределом текучести, низкой твердостью и большим относительным удлинением.

Анализ наиболее распространенных конструкций заготовок деталей, изготовляемых холодной штамповкой, позволяет установить некоторые технологические особенности их конструирования, в соответствии с которыми следует:

- шире применять штампосварные конструкции;

- учитывать технологические особенности различных штамповочных операций;

- для увеличения прочности деталей применять ребра жесткости, загибку фланцев, отбортовку и закатку кромок;

- избегать сложных кривых (окружностей), внутренних откосов;

- обеспечивать конфигурацию деталей или её развертки, дающей наивыгоднейшее использование листового материала и позволяющее применять малоотходный или безотходный раскрой; если отходы неизбежны, то желательно придавать им конфигурацию, соответствующую другой детали, согласованием конфигурации и расположения наружного контура одной детали с наружным контуром другой или использование отходов внутреннего контура;

- снижать трудоемкость изготовления детали применением стандартных профилей;

- максимально унифицировать марки материала и уменьшать номенклатуру применяемых толщин материала.

Плоские детали из листового материала толщиной от 0.05 до 25мм можно отрезать на гильотинных ножницах, в отрезных штампах и вырубать в штампе на прессе.

Способ получения детали зависит от контура детали или развертки. Унификация размеров вырубаемых элементов (отверстий, пазов, выступов, радиусов сопряжений) позволяет использовать поэлементно штамповку. Минимальная ширина детали для отдельных участков её контура зависит от толщины металла и его механических свойств. Толщина материала заготовки, её ширина также влияет на конструктивные формы заготовок при изготовлении их рассматриваемым способом.

Основные технологические требования к конструкции гнутой детали заключаются в обеспечении формы гибки. Наиболее технологичны Г‑образные и П‑образные сечения, т.е. детали типа уголков и скоб.

При выборе конструкции детали, изготовленной гибкой, рекомендуется:

- при гибке твердых и малопластичных металлов (бронза, сильно наклепанная латунь, лента пружинной стали и др.) линию сгиба располагают перпендикулярно направлению проката;

- минимально допустимые радиусы применять только при необходимости;

- если деталь имеет П‑образную форму и скошенные до зоны деформации боковые стороны, то происходит неполный изгиб, а в месте изгиба - смятие заготовки.

Штампованные детали изготавливаются двумя группами технологических операций: разделительные и формообразующие. К первой группе относятся операции отрезки, вырубки, пробивки и т.п. Ко второй группе относятся операции гибки, вытяжки, высадки и т.п. Стоимость штампованной детали тем меньше, чем проще её форма и размеры. Для изготовления деталей из листовых материалов применяют разнообразные материалы, как металлические, так и неметаллические. Из металлических сплавов широкое применение получили алюминиевые сплавы из стали, используется также латунь и магниевые сплавы. Учитывая специальные требования к прочности прибора, рекомендуется изготавливать кожух и основание прибора из стали толщиной 1.5...2мм. Исходя из вышесказанного, выбираем сталь марки Ст08кп.

Для изготовления печатных плат в РЭА наиболее широкое распространение получили стеклотекстолит и гетинакс. Материал для изготовления печатной платы должен иметь следующие показатели (в заданных условиях эксплуатации РЭС):

· большую электрическую прочность;

· малые диэлектрические потери;

· допускать штамповку;

· выдерживать кратковременное воздействие температуры до плюс 2400 С в процессе пайки на плате ЭРЭ;

· иметь высокую влагостойкость;

· быть дешёвым;

· обладать химической стойкостью к действию химических растворов, используемых в техпроцессах изготовления платы.

Для изготовления плат общего применения в РЭС наиболее широко используется стеклотекстолит. Фольгированный стеклотекстолит представляет собой слоистый прессованный материал, изготовленный на основе ткани из стеклянного волокна, пропитанной термореактивным связующим на основе эпоксидной смолы, и облицованный с одной стороны медной электролитической оксидированной или гальваностойкой фольгой (изготавливают листами толщиной: до 1 мм - не менее 400х600мм; от 1,5 и более - не менее 600х700мм). На основании вышеприведенного, для изготовления печатной платы может использоваться следующий материал:

- СФ-2-35-1,5 ГОСТ 10316-78 - стеклотекстолит фольгированный предназначен для изготовления печатных плат с повышенными диэлектрическими свойствами.

Поверхностное электрическое сопротивление после кондиционирования в условиях 96ч/плюс 40°C/ 93%, Ом не менее 1010

В таблице 3.2.1 приведены материалы, используемые для изготовления блока управления замком на электронных ключах.

Таблица 3.2.1 – Применяемые материалы.

Наименование изделия

Марка материала

Покрытие

Корпус

Ст08кп

Эмаль ГФ‑245-ПМ светло-серая

Крышка

Ст08кп

Эмаль ГФ‑245-ПМ светло-серая

Плата печатная

СФ-2‑35

Сплав «Розе»


4 Выбор и обоснование компоновочной схемы, методов и

принципов конструирования

4.1 Выбор компоновочной схемы

Основная компоновочная схема изделия определяет многие важнейшие характеристики РЭС: габариты, вес, объем монтажных соединений, способы защиты от полей, температуры, механических воздействий, ремонтопригодность.

Различают три основные компоновочные схемы РЭС [1]:

¾ централизованная;

¾ децентрализованная;

¾ централизованная с автономными пультами управления.

Каждая из этих схем обладает своими достоинствами и недостатками.

При централизованной компоновке все элементы сложной системы располагаются в одном отсеке на специальных этажерочных конструкциях или шкафах, длина и количество межблочных соединений сведены к минимуму, ремонт и демонтаж наиболее удобны, легче выполнить качественные системы охлаждения и амортизации. Такая компоновочная схема требует более тщательной экранировки, вызывает затрудненность компоновки изделия, часто требующей доработки его, обладает относительно меньшей надежностью систем охлаждения, герметизации, виброзащиты [1].

Децентрализованная компоновочная схема обеспечивает относительно большую легкость размещения элементов изделия на объекте, не требуется тщательная экранировка отдельных блоков, при соответствующих схемных решениях может быть более надежной, сохраняя частичную работоспособность при выходе из строя отдельных элементов изделия. Недостатком является значительная длина межблочных соединений, затруднен полный демонтаж системы, для каждого отдельного блока необходимо предусматривать автономные системы охлаждения, виброзащиты [1].

Наиболее распространен способ централизованной компоновки, при котором все элементы сложной РЭС, кроме входных и управляющих устройств, распологают в одном участке или отсеке блока. Однако внутри этого отсека компоновка выполняется в виде совокупности отдельных блоков и приборов [1]

4.2 Выбор и обоснование метода и принципа

конструирования

На основе проведенного разбиения электрической схемы и анализа существующих конструкций выбирается метод конструирования устройства в целом и его частей. Существующие методы конструирования РЭС подразделяются на три взаимосвязанные группы [2]:

по видам связей между элементами;

по способу выявления и организации структуры связей между элементами;

по степени автоматизации конструирования РЭС - зависит от назначения аппаратуры и ее функций, преобладающего вида связей, уровня унификации, автоматизации и т.д.

Рассмотрим кратко сложившиеся методы конструирования РЭС.

Геометрический метод . В основу метода положена структура геометрических и кинематических связей между деталями, представляющая собой систему опорных точек, число и размещение которых зависит от заданных степеней свободы и геометрических свойств твердого тела [2].

Машиностроительный метод . В основу этого метода конструирования положена структура механических связей между элементами, представляющая собой систему опорных поверхностей. Машиностроительный метод используется для конструирования устройств и элементов РЭА, которые несут большие механические нагрузки и в которых неизбежны вследствие этого большие деформации [2].

Топологический метод . В основу метода положена структура физических связей между ЭРЭ. Топологический метод, в принципе, может применяться для выявления структуры любых связей, однако конкретное его содержание проявляется там, где связности элементов может быть сопоставлен граф [2].

Метод проектирования моноконструкций . Основан на минимизации числа связей в конструкции, он применяется для создания функциональных узлов, блоков, РЭА на основе оригинальной несущей конструкции в виде моноузла (моноблока) с оригинальными элементами [2].

Базовый (модульный) метод конструирования . В основу метода положен модульный принцип проектирования. Деление базового метода на разновидности связано с ограничениями, схемной конструкторской унификацией структурных уровней (модулей функциональных узлов, блоков). Базовый метод является основным при проектировании современной РЭА, он имеет много преимуществ по сравнению с методом моноконструкций [2]:

на этапе разработки позволяет одновременно вести работу над многими узлами и блоками, что сокращает сроки проведения разработок; упрощает отладку и сопряжение узлов в лаборатории, так как работа любого функционального узла определяется работой известных модулей, резко упрощается конструирование и макетирование; сокращает объем оригинальной конструкторской документации, дает возможность непрерывно совершенствовать аппаратуру без коренных изменений конструкции; упрощает и ускоряет внесение изменений в схему, конструкцию и конструкторскую документацию;

на этапе производства сокращает сроки освоения серийного производства аппаратуры; упрощает сборку, монтаж, снижает требования к квалификации сборщиков и монтажников; снижает стоимость аппаратуры благодаря широкой механизации и автоматизации производства; повышает степень специализации производства;

при эксплуатации повышает эксплуатационную надежность РЭА, облегчает обслуживание, улучшает ремонтопригодность аппаратуры.

При компоновке должны быть учтены требования оптимальных функциональных связей между модулями, их устойчивость, стабильность, требования прочности и жесткости, помехозащищенности и нормального теплового режима, требования технологичности, эргономики, удобства эксплуатации и ремонта. Размещение комплектующих элементов в модулях всех уровней должно обеспечивать равномерное и максимальное заполнение конструктивного объема с удобным доступом для осмотра, ремонта и замены. Замена детали или сборочной единицы не должна приводить к разборке всей конструкции или ее составных частей. Для устойчивого положения изделия в процессе эксплуатации центр тяжести должен находиться, возможно, ближе к опорной поверхности. При компоновке модулей всех уровней необходимо выделить достаточно пространства для межсоединений.

При проектировании необходимо придерживаться следующих рекомендаций [2]:

* минимальный внутренний радиус изгиба проводника должен быть не менее диаметра провода с изоляцией;

* провода питания переменного тока следует свивать для уменьшения возможности наводок;

* провода, подводящие к сменным элементам должны иметь некоторый запас по длине, допускающий повторную заделку провода;

* провода не должны касаться острых металлических кромок;

* монтажные провода целесообразно связать в жгут, при этом обеспечивается возможность расчленения монтажных операций на более простые.

Для разъемного варианта конструкции большое распространение получило использование объединительной печатной платы, что позволяет существенно уменьшить габаритные размеры изделия, упростить сборку.

При компоновке РЭС необходимо решать вопросы электромагнитной совместимости элементов, в частности, защиты от электромагнитных, электрических и магнитных помех.

При защите РЭС от воздействий помех, определяют максимальное значение сигналов помехи на выходах схем, усложняют схему введением фильтров на линиях входа-выхода, устраняют помехи по линиям электропитания с помощью радиочастотных фильтров, экранируют входные цепи чувствительных схем, для элементов РЭС разрабатывают кожухи-экраны.

В качестве метода конструирования выбираем базовый (модульный) метод конструирования.

Исходя из сказанного проведем деление схемы электрической принципиальной на функционально законченные узлы. Схему прибора целесообразно разделить на 3 узла:

- базовый модуль;

- микропроцессорный модуль;

- модуль звуковой и световой индикации.

Радиоэлементы каждого функционального узла предлагается разместить на отдельных печатных платах. Силовой трансформатор необходимо закрепить непосредственно на плате базового модуля. Связь между базовым и микропроцессорным модулем обеспечивается с помощью штырькового разъема, а между базовым модулем и модулем звуковой и световой индикации посредством гибких монтажных проводов.

При данном разбиении схемы электрической принципиальной обеспечивается минимальное количество соединительных проводников, т.е. минимум электрических связей между узлами, высокая ремонтопригодность.


5 Выбор способов и средств теплозащиты,

герметизации, виброзащиты и экранирования

5.1 Выбор способов охлаждения на ранней стадии

проектирования

Для обеспечения нормального теплового режима необходимо выбрать такой способ охлаждения блока управления электромеханическим замком (далее "блока"), при котором количество тепла, рассеиваемого в окружающую среду, будет равным мощности теплоты выделения блока, при этом также необходимо учесть теплостойкость элементной базы.

Расчет температуры всех входящих в блок элементов представляет собой чрезвычайно трудоемкий процесс. В связи с этим встает вопрос: для каких элементов необходимо рассчитывать температуру, чтобы с заданной достоверностью можно было судить о соответствии теплового режима всего блока требованиям технического задания.

Методика определения числа элементов РЭС, подлежащих расчету теплового режима, состоит в следующем [3]:

1. Задаемся вероятностью правильного расчета р.

Если вероятность p > 0,8, то можно остановиться на выбранном способе охлаждения. При вероятностной оценке 0,8 > р > 0,3 можно применить выбранный способ охлаждения, однако при конструировании РЭС обеспечению нормального теплового режима следует уделить тем больше внимания, чем меньше вероятность. При вероятности 0,3 > р > 0,1 не рекомендуется использовать выбранный способ охлаждения.

Исходя из вышеизложенного, задаемся вероятностью правильного расчета р > 0,8.

2.Определяем средний перегрев нагретой зоны.

Исходными данными для проведения последующего расчета являются:

- коэффициент заполнения по объему 0,6;

- суммарная мощность, рассеиваемая в блоке, Вт 24;

- давление окружающей среды, кПа 103;

- давление внутри корпуса, кПа 103;

- габаритные размеры корпуса, м 0,183x0,130x0,065;

Средний перегрев нагретой зоны герметичного корпуса блока с естественным воздушным охлаждением определяется по следующей методике [4]:

1. Рассчитывается поверхность корпуса блока:

Sk = 2 × [ L1 × L2 + ( L1 + L2 ) × L3 ] (5.1.1)

где L1 , L2 - горизонтальные размеры корпуса, м;

L3 - вертикальный размер, м.

Для разрабатываемой конструкции блока L1 = 0,183м, L2 = 0,130м, L3 = 0,065м. Подставив данные в (5.1.1), получим:

Sk = 2·[0,183·0,130+(0,183+0,130)·0,065]=0,44 м2 .

2. Определяется условная поверхность нагретой зоны:

Sз = 2 × [ L1 × L2 + ( L1 + L2 ) × L3 × Кз ] (5.1.2)

где КЗ - коэффициент заполнения корпуса по объему. В нашем случае

КЗ = 0,6. Подставляя значение КЗ в (5.2.2), получим:

Sз = 2 · [0,183·0,130+(0,183+0,130)·0,065·0,6]=0,036 м2 .

3. Определяется удельная мощность корпуса блока:

Qk = P \ Sk (5.1.3)

где Р - мощность, рассеиваемая в блоке. Для разрабатываемого блока мощность, рассеиваемая в дежурном режиме Р =1,5 Вт.

Тогда:

Qk = 1.5 \ 0,44 = 3,41 Вт/м2 .

4. Определяется удельная мощность нагретой зоны:

Qз = P \ Sз (5.1.4)

Qз = 1,5 \ 0,036 = 41,6 Вт/м2 .

5. Находится коэффициент Q1 в зависимости от удельной мощности корпуса блока формула (5.1.5):

Q1 = 0,1472 × Qk – 0,2962 × 10 –3 × Qk 2 + 0,3127 × 10 –6 × Qk 3 (5.1.5)

Q1 = 0,1472 × 2,41 – 0,2962 × 10 –3 × 3,412 + 0,3127 × 10 –6 × 3,413 = 0,49

Находится коэффициент Q2 в зависимости от удельной мощности нагретой зоны формула (5.1.6):

Q2 = 0,1390 × Qз – 0,1223 × 10 –3 × Qз 2 + 0,0698 × 10 –6 × Qз 3 (5.1.6)

Q1 = 0,1390 × 41,6 – 0,1223 × 10 –3 × 41,62 + 0,0698 × 10 –6 × 41,63 = 5,56

6. Определяется коэффициент КН1 в зависимости от давления среды вне корпуса блока:

KH1 = 0,82 + 1 \ (0,925 + 4,6 × 10-5 × H1 ) (5.1.7)

где Н1 - давление окружающей среды в Па. В нашем случае Н1 =87кПа. Подставив значение Н1 в (5.1.7), получим:

KH1 = 0,82 + 1 \ (0,925 + 4,6 × 10-5 × 87 × 103 ) = 1,87

7. Определяется коэффициент КН2 в зависимости от давления среды внутри корпуса блока:

KH2 = 0,8 + 1 \ (1,25 + 3,8 × 10-5 × H2 ) (5.1.8)

где Н2 - давление внутри корпуса в Па.

В нашем случае Н21 =87кПа. Тогда:

KH2 = 0,8 + 1 \ (1,25 + 3,8 × 10-5 × 87 × 103 ) = 1,598

8. Рассчитывается перегрев корпуса блока:

Qk = Q1 × KH1 (5.1.9)

Qк = 0,49 · 1,87 = 0,9163

10. Рассчитывается перегрев нагретой зоны:

Qз = Qk +(Q2 - Q1 ) × KH2 (5.1.10)

Qз = 0,9163 + (5,56 – 0,49) · 1,598 = 9,01

11. Определяется средний перегрев воздуха в блоке:

Qв = (Qк - Qз ) × 0,5 (5.1.11)

Qв = 0,5 · (0,9163 + 9,01) = 4,96

12. Определяется удельная мощность элемента:

Qэл = Pэл \ Sэл (5.1.12)

где Рэл - мощность, рассеиваемая элементом (узлом), температуру которого требуется определить, Вт

Sэл - площадь поверхности элемента, омываемая воздухом, см.кв

Наименее теплостойкий элемент базового модуля в дежурном режиме стабилизатор. Для него Р эл = 0,15 Вт, Sэл = 1,5 см.кв.

Qэл = 0,15 \ 1,5 = 0,1

13. Определяется перегрев поверхности элементов:

Qэл = Qз × (0,75 + 0,25 × Qэл \ Qз ) (5.1.13)

Qэл = 9,01 × (0,75 + 0,25 × 0,1 \ 41,6 ) = 6,76

14. Определяется перегрев среды, окружающей элемент:

Qэс = Qв × (0,75 + 0,25 × Qэл \ Qз ) (5.1.14)

Qэл = 4,96 × (0,75 + 0,25 × 0,1 \ 41,6 ) = 3,72

15. Определяется температура корпуса блока:

Тк = Qк + Тс (5.1.15)

где Т с - температура среды, окружающей блок.

Тк = 0,9163 + 45 = 45,916

16. Определяется температура нагретой зоны:

Тз = Qз + Тс (5.1.16)

Т з = 9,01 + 45 = 54,01

17. Определяется температура поверхности элемента:

Тэл = Qэл + Тс (5.1.17)

Тэл = 6,76 + 45 = 51,76

18. Определяется средняя температура воздуха в блоке:

Тв = Qв + Тс (5.1.18)

Тв = 4,96 + 45 = 49,96

19. Определяется температура среды, окружающей элемент:

Тэс = Qэс + Тс (5.1.19)

Тэс = 3,72 + 45 = 48,72

Для выбора способа охлаждения исходными данными являются следующие данные:

- суммарная мощность Рр , рассеиваемая в блоке, Вт 1,5;

- диапазон возможного изменения температуры окружаю-

щей среды:

микроклимат +20…+24°C

и по ГОСТ 15150-69, +10…+45 °C;

- пределы изменения давления окружающей среды:

Рмах, кПа (мм рт. ст.) 106,7 (800);

Pmin, кПа (мм рт. ст.) 84,0 (630);

- допустимая температура элементов

(по менее теплостойкому элементу), Тmax , °C +75;

- коэффициент заполнения по объему 0,6;

Выбор способа охлаждения часто имеет вероятностный характер, т.е. дает возможность оценить вероятность обеспечения заданного в техническом задании теплового режима РЭС при выбранном способе охлаждения, а также те усилия, которые необходимо затратить при разработке будущей конструкции РЭС с учетом обеспечения теплового режима.

Выбор способа охлаждения можно выполнить по методике [3]. Используя графики, характеризующие области целесообразного применения различных способов охлаждения и расчеты, приведенные ниже, проверим возможность обеспечения нормального теплового режима блока в герметичном корпусе с естественным воздушным охлаждением.

Условная величина поверхности теплообмена рассчитывается по (5.1.2).

Sп = 0,036м2 .

Определив площадь нагретой зоны, определим удельную мощность нагретой зоны: плотность теплового потока, проходящего через поверхность теплообмена, рассчитывается по (5.1.4). qЗ = 41,6 Вт/м2 .

Тогда: lg qЗ =lg 41,6 = 1,619.

Максимально допустимый перегрев элементов рассчитывается по (5.1.13)

, (5.1.13)

Тогда:

По графикам [рис.2.35, рис.2.38, 3] для значений qЗ = 41,6 Вт/м2 и определяем, что нормальный тепловой режим блока в герметичном корпусе с естественным воздушным охлаждением будет обеспечен с вероятностью p = 0,9. Так как полученное значение вероятности p > 0,8, то можно остановиться на выбранном способе охлаждения.

Более подробный расчет теплового режима проводится далее.

5.2 Выбор способов и методов герметизации

Герметизация - обеспечение практической непроницаемости корпуса РЭС для жидкостей и газов с целью защиты ее элементов от влаги, плесневых грибков, пыли, песка, грязи и механических повреждений. Она является наиболее радикальным способом защиты элементов РЭС.

Различают индивидуальную, общую, частичную и полную герметизацию [5].

Индивидуальная допускает замену компонентов РЭС при выходе из строя и ремонт изделия. При общей герметизации (она проще и дешевле индивидуальной) замена компонентов и ремонт возможны только при демонтаже корпуса, что может вызвать затруднение.

Для частичной герметизации применяют пропитку, обволакивание и заливку как компонентов, так и РЭС лаками, пластмассовыми или компаундами на органической основе. Они, как правило, не обеспечивают герметичность в течение длительного времени.

Практически полная защита РЭС от проникновения воды, водяных паров и газов достигается при использовании металлов, стекла и керамики с достаточной степенью непроницаемости. Наиболее распространенные способы такой герметизации - применение металлических корпусов с воздушным заполнением. Исходя из вышесказанного, применительно для блока управления электромеханическим замком, выбираем индивидуальную герметизацию.

Важным фактором повышения эффективности герметизации является лакокрасочные, гальванические и химические покрытия пропитывающих, обволакивающих и заливочных материалов, металлического и металло-полимерного гермокорпусов.

Разъемная герметизация применяется для защиты блоков РЭС, требующих замены компонентов при ремонте, регулировке и настройке.

Общие требования к покрытиям металлическим и неметаллическим неорганическим установлены ГОСТ 9.301-86 (СТ СЭВ 5293-85, СТ СЭВ 5294-85, СТ СЭВ 5295-85).

Требования к поверхности основного металла: под защитные покрытия RZ 40, не грубее; под защитно-декоративные Ra 2,5, не грубее; под твердые и электроизоляционные Ra 1,25, не грубее.

Данные о покрытиях деталей и сборочных единиц разрабатываемой конструкции блока управления замком электромеханическим приведены в таблице 5.2.1

Таблица 5.2.1 - Данные о покрытиях деталей и сборочных единиц конструкции блока управления замком электромеханическим.

Детали, сборочные единицы

Материал детали, сборочной единицы

Покрытия

Металлическое

Химическое

Лакокрасочное

Плата печатная

СФ-2-35Г-1,5

Сплав "Розе"

-

-

Корпус

Ст08кп

-

-

ГФ‑245-ПМ (светло-серая)

Крышка

Ст08кп

-

-

ГФ‑245-ПМ (светло-серая)

Эмаль ГФ‑245-ПМ, светло-серая, ГОСТ 18374-79 - покрытие эмалью ГФ‑245-ПМ, цвет светло-серый, эксплуатируется в условиях умеренного климата.

Эмаль ГФ‑245-ПМ предназначена для покрытия металлических поверхностей, работающих в условиях умеренного и холодного климата. Стойкость эмалей к статическому воздействию воды не менее 24 ч.

5.3 Выбор способов и методов экранирования

Экранирование - локализация электромагнитной энергии в определенном пространстве, за счет ограничения распространения ее всеми возможными способами.

Из этого следует, что в понятие экрана входят как детали механической конструкции, так и электротехнические детали фильтрующих цепей и развязывающих ячеек, ибо только их совместное действие дает необходимый результат [5].

При прохождении мощных сигналов по цепям связи последние становятся источниками электромагнитных полей, которые, пересекая другие цепи связи, могут наводить в них дополнительные помехи. Источниками электромагнитных помех могут быть также мощные промышленные установки, транспортные коммуникации, двигатели и т.д. Для того, чтобы локализовать, где это возможно, действие источника или сам приемник помех, используют экраны. По принципу действия различают электростатическое, магнитостатическое и электромагнитное экранирование.

Электростатическое экранирование - вид экранирования, заключающийся в шунтировании большей части (или всей) паразитной емкости емкостью корпуса.

Электромагнитное экранирование . Переменное высокочастотное электромагнитное поле при прохождении через металлический лист либо перпендикулярно, либо под некоторым углом к его плоскости, наводит в этом листе вихревые токи, поле которых ослабляет действие внешнего поля. Металлический лист в данном случае является электромагнитным экраном. Примером электромагнитного экрана служит корпус блока управления электромеханическим замком.

Внутриблочное экранирование и электромагнитная совместимость элементов и узлов сводятся к решению ряда конструктивных задач, основными из которых являются:

- анализ и учет паразитных емкостных связей, между пленочными элементами и проводниками объединительного и выводного монтажа в ячейках блоков РЭС;

- покаскадное экранирование и последовательное расположение каскадов в блоках приемно-усилительной аппаратуры;

- экранирование ЭРЭ с сильными полями и критичных к внешним электромагнитным наводкам;

- расчет на резонансные частоты корпусов блоков РЭС, реализующих схему СВЧ [7].

Экранированные провода, коаксиальные кабели и многожильные экранированные шланги с экранированными проводами внутри них следует применять в основном для соединения отдельных блоков и узлов друг с другом. Они позволяют защитить многоблочные устройства от наводок, поступающих извне, от взаимных наводок внутри устройства и защитить от наводок приборы, находящиеся в окружающем пространстве. Следует обратить особое внимание на качество присоединения оплеток к корпусам приборов [7].

В разрабатываемой конструкции блока управления электромеханическим замком нет источников электромагнитных помех.

5.4 Выбор способов и методов виброзащиты

Вибрации подвержены РЭС, установленные на автомобильном, железнодорожном транспорте, в производственных зданиях, на кораблях и самолетах.

Практический диапазон частот вибрации, действующей на РЭС, имеет широкий предел. Например, для наземной аппаратуры, переносимой или перевозимой на автомашинах, частота достигает 120 Гц при ускорении, действующем на приборы, до 6 g. Работающие в таких условиях РЭС должны обладать вибропрочностью и виброустойчивостью.

Вибропрочность - способность РЭС противостоять разрушающему действию вибрации в заданных диапазонах частот и при возникающих ускорениях в течение срока службы.

Виброустойчивость - способность выполнять все свои функции в условиях вибрации в заданных диапазонах частот и возникающих при этом ускорениях.

Известно, что в приборах, не защищенных от вибрации и ударов, узлы, чувствительные к динамическим перегрузкам, выходят из строя. Делать такие узлы настолько прочными, чтобы они выдерживали максимальные (действующие) динамические перегрузки, не целесообразно, так как увеличение прочности, в конечном счете, ведет к увеличению массы, а вследствие этого и к неизбежному возрастанию динамических перегрузок. Поэтому целесообразно использовать другие средства для снижения перегрузок [8].

Покрытие платы лаком не только обеспечивает защиту от вибрации, но и создает дополнительные точки крепления элементов к плате.

В разрабатываемой конструкции блока управления электромеханическим замком применено два вида соединений: разъемные и неразъемные. К первому виду относятся в основном резьбовые соединения, ко второму -- пайка, сварка, развальцовка.

Основным недостатком резьбовых соединений является самоотвинчивание при действии вибрации. Для устранения самоотвинчивания в разрабатываемой конструкции применяются контровочные шайбы.

Сварочные соединения должны быть точно рассчитаны, качество сварки должно контролироваться.


6 Расчет конструктивных параметров изделия

6.1 Компоновочный расчет блоков РЭС

Выбор компоновочных работ на ранних стадиях проектирования позволяет рационально и своевременно использовать или разрабатывать унифицированные и стандартизированные конструкции РЭС. В зависимости от характера изделия (деталь, прибор, система) будет выполняться компоновка различных ее элементов. Основная задача, которая решается при компоновке РЭС, - это выбор форм, основных геометрических размеров, ориентировочное определение веса и расположение в пространстве любых элементов или изделий РЭС. На практике задача компоновки РЭС чаще всего решается при использовании готовых элементов (деталей) с заданными формами, размером и весом, которые должны быть расположены в пространстве или на плоскости с учетом электрических, магнитных, механических, тепловых и др. видов связи.

Методы компоновки элементов РЭС можно разбить на две группы: аналитические и модельные. К первым относятся численные и номографические, основой которых является представление геометрических или обобщенных геометрических параметров и операций с ними в виде чисел. Ко вторым относятся аппликационные, модельные, графические и натурные методы, основой которых является та или иная физическая модель элемента, например в виде геометрически подобного тела или обобщенной геометрической модели.

Основой всех методов является рассмотрение общих аналитических зависимостей. При аналитической компоновке мы оперируем численными значениями различных компоновочных характеристик: геометрическими размерами элементов, их объемами, весом, энергопотреблением и т.п. зная соответствующие компоновочные характеристики элементов изделия и законы их суммирования, мы можем вычислить компоновочные характеристики всего изделия и его частей.

Для определения размеров печатных плат и габаритных размеров корпуса БУ произведем компоновочный расчет.

Рассчитаем установочные площади типоразмеров элементов, устанавливаемых на печатные платы. Установочные габариты элементов приведены в таблице 6.1.1.Таблица 6.1.1 – установочные габариты элементов.

Тип

Количество, шт.

Площадь, мм

Объем, мм

1

2

3

4

Процессорная плата

Резисторы

С2-23-0,125

11

24

72

Конденсаторы

К50-35-100X16В

2

50

650

МО-21

5

48

384

Диоды

КД522А

6

22

66

Микросхемы

ЭКР1830ВЕ31

1

775

3875

D27C64

1

548

2957

DS1230

1

548

2957

ЭКР1568РР1

2

75

375

ЭКР1554ИР22

1

195

975

К561ТЛ1

1

150

750

Транзисторы

КТ3102

2

20

180

Прочие элементы

Резонатор кварцевый РК351

1

40

640

Итого в сумме

3182

175432

Продолжение таблицы 6.1.1

1

2

3

4

Базовая плата

Резисторы

С2-23-0,125

24

24

72

С2-23-0,5

1

56

392

С2-23-2

1

192

1728

Диоды

КД522А

8

22

66

КД243

9

42

210

КС147

1

22

66

Транзисторы

КТ3102

4

30

270

КТ3107

2

30

270

КТ973

3

24

312

Конденсаторы

К50-35-2200X25В

1

380

13305

К50-35-220X16В

1

80

1040

К50-35-100X16В

1

50

754

МО-21

8

48

384

Микросхемы

КР142ЕН5А

1

45

990

Прочие элементы

Трансформатор

1

4225

190125

Вставка плавкая ВП1-1

4

140

1120

Клемник 3-х контактный

3

135

1755

Клемник 2-х контактный

2

90

1170

Реле РЭС-49

1

55

1375

Итого в сумме

8036

231634

Окончание таблицы 6.1.1

1

2

3

4

Блок индикации

Светодиоды АЛ307

2

28

283

Головка динамическая

1

1964

23562

Итого в сумме

2020

24128

Площадь с учетом коэффициента заполнения:

S = S'/Кз (6.1.1)

где S' – суммарная установочная площадь элементов;

Кз – коэффициент заполнения (для стационарной наземной РЭА принимаем равным 0,4).

Подставив, получим:

- для процессорного модуля S = 3176/0,4=7940 мм;

- для базового модуля S = 7694/0,4=19235 мм;

- для модуля индикации S = 2020/0,4=5050 мм.

Далее по таблице предпочтительных размеров, по ГОСТ10317-79 , получаем размеры печатных плат:

- для процессорного модуля 120x57 мм;

- для базового модуля 120x140 мм;

- для модуля индикации 70x65 мм.

Ширина процессорного модуля одновременно является максимальной высотой элемента, так как впаивается в базовый блок. Его высота составляет 57 мм.

Далее, зная размеры печатных плат и максимальную высоту элемента и габариты аккумулятора, определяем габариты корпуса прибора, используя предпочтительные ряды чисел. Получим: длина - 183 мм, ширина - 130 мм, высота - 65 мм. Итого объем корпуса:

V = 183 130 65 = 1546350 мм.

Определяем коэффициент заполнения по объему по формуле (6.1.2):

, (6.1.2)

где – суммарный объем всех элементов:

, мм (6.1.3)

где - суммарный объем элементов базового блока;

- суммарный объем элементов процессорного блока;

- суммарный объем элементов блока индикации;

- объем аккумулятора (110х55х75 мм).

Подставив значения в формулы 5.3 и 5.2 получим:

= 265234+189112+33228+453750=941324 мм.

= 941324/1546350 = 0,6

Выбор печатного монтажа радиоэлементов в блоке обусловлен заданной программой выпуска изделия – 1000шт/год. Печатный монтаж в этом случае является наиболее экономически целесообразным.

При разработке печатных плат необходимо руководствоваться следующими документами:

- ГОСТ23751‑86;

- ГОСТ10317‑79;

- ОСТ4ГО.010.009;

- СТБ 1014-95;

- и другие.

Исходными данными к разработке топологии печатной платы является:

- схема электрическая принципиальная;

- установочные размеры радиоэлементов узла;

- рекомендации по разработке монтажа для выбранной серии микросхем.

Рекомендации по разработке печатных плат:

- Разводка питающего напряжения узлов и блоков (шин «земля» и «питание») должна проводиться проводниками с возможно более низким сопротивлением.

- Низкочастотные помехи, проникающие в систему по шинам питания, должны блокироваться с помощью конденсатора, включенного между выводами «питание» и «земля» непосредственно у начала проводника на печатной плате.

- Информационные линии связи рекомендуется выполнять с помощью печатного монтажа.

- Проводники, расположенные на различных сторонах платы, должны перекрещиваться под углом 900 или 450 и иметь минимальную длину.

- Максимально допустимая длина печатных параллельных проводников, расположенных на одной стороне платы при ширине проводников от 0.5 до 5мм, не должна превышать 30см.

С целью уменьшения габаритных размеров разрабатываемой конструкции печатную плату указанного узла целесообразно выполнять двухсторонней. Класс точности печатной платы базового модуля выбираем второй.

Печатные платы первого и третьего классов точности наиболее просты в исполнении, надежны в эксплуатации, имеют минимальную стоимость. Для повышения надежности паяных соединений, отверстия в печатных платах необходимо выполнить металлизированными. Конфигурация печатных плат прямоугольная. Шаг координатной сетки выбран равным 1.25мм как наиболее предпочтительный. Установку радиоэлементов на плате необходимо производить в соответствии с ГОСТ 29137 - 91.

6.2 Расчет теплового режима блока управления электромеханического замка

Расчет теплового режима РЭА заключается в определении по исходным данным температуры нагретой зоны и температур поверхностей теплонагруженных радиоэлементов и сравнения полученных значений с допустимыми для каждого радиоэлемента в заданных условиях эксплуатации. Произведем расчет по [].

1) Рассчитывается поверхность корпуса блока:

SK =2×[L1 ×L2 +(L1 +L2 )×L3 ], (6.2.1)

где L1 и L2 - горизонтальные размеры корпуса, м;

L3 - вертикальный размер, м.

2) Определяется условная поверхность нагретой зоны:

=2×[L1 ×L2 +(L1 +L2 )×L3 ×Kз ], (6.2.2)

где Kз - коэффициент заполнения корпуса по объему.

3) Определяется удельная мощность корпуса блока:

qk = P / SK , (6.2.3)

где P=10Вт - мощность, рассеиваемая в блоке.

4) Определяется удельная мощность нагретой зоны:

qз = P / Sз , (6.2.4)

5) Находится коэффициент Q1 в зависимости от удельной мощности корпуса блока:

Q1 = 0.1472×qk - 0.2962×10-3 × qk 2 +0.3127×10-6 × qk 3 , (6.2.5)

6) Находится коэффициент Q2 в зависимости от удельной мощности нагретой зоны:

Q2 = 0.1390×qk - 0.1223×10-3 × qk 2 +0.0698×10-6 × qk 3 , (6.2.6)

7) Находится коэффициент KH1 в зависимости от давления среды вне корпуса блока H1 :

KH1 = 0.82+(1 / (0.925+4.6×10-5 × H1 )) (6.2.7)

8) Находится коэффициент KH2 в зависимости от давления среды внутри корпуса блока H2 :

KH2 = 0.8+(1 / (1.25+3.8×10-5 ×H2 )), (6.2.8)

где Н2 - давление внутри корпуса аппарата в Па.

9) Рассчитывается перегрев корпуса блока:

QK = Q1 ×KH1 , (6.2.9)

10) Определяется перегрев нагретой зоны:

QЗ = Qk + (Q2 - Q1 )×KH2 , (6.2.10)

11) Определяется средний перегрев воздуха в блоке:

Qв = 0.5·(Qk +QЗ ), (6.2.11)

12) Определяется температура корпуса блока:

Тк = Qкс, (6.2.12)

13) Определяется температура нагретой зоны:

Tз = Qзс , (6.2.13)

14) Находится средняя температура воздуха в блоке:

ТВ = Qвс , (6.2.14)

Расчет теплового режима по приведенной методике производим на ЭВМ при помощи специальной программы. Результаты расчета приведены в приложении .

Из анализа полученных результатов заключаем, что при заданных условиях эксплуатации разрабатываемого прибора обеспечивается нормальный тепловой режим применяемых в нем радиоэлементов в процессе эксплуатации, т.е. рабочие температуры не превышают предельно допустимых величин.

Таким образом, выбранная конструкция корпуса и естественного способа охлаждения путем конвекции воздуха не нуждается в изменении и применении в ней других способов охлаждения. Естественный способ охлаждения является наиболее легко реализуемые и требует минимальных затрат с экономической точки зрения по сравнению с другими способами охлаждения РЭА. Учитывая вышесказанное, окончательно выбираем герметичный корпус для разрабатываемого изделия.

6.3 Расчет конструктивно-технологических параметров печатной платы. Выбор и обоснование методов изготовления печатной платы

6.3.1 Выбор и обоснование методов изготовления печатной платы

Метод изготовления печатной платы выбран на основании ОСТ 4 ГО 054. 043 и ОСТ 4 ГО 054. 058. В соответствии с ними существуют следующие методы: комбинированный (позитивный и негативный), химический, металлизация сквозных отверстий для изготовления многослойных печатных плат.

Исходя из особенностей электрической схемы, элементной базы разрабатываемого устройства и конструктивных характеристик печатных плат, изготавливаемых различными методами, выбираем комбинированный позитивный метод изготовления печатных плат.

Как было отмечено в техническом задании, схема электрическая принципиальная блока управления замком электромеханическим разделена на три функциональных блока. Каждый блок размещен на отдельной печатной плате. Трассировка плат ведется по двум сторонам, что упрощает разводку проводников и позволяет уменьшить размеры печатной платы. Монтажные отверстия должны иметь металлизацию.

При разработке печатной платы следует учитывать следующие рекомендации:

- питающие проводники и «земля» должны иметь минимальное сопротивление и длину;

- «сигнальные» проводники должны иметь минимальные участки, где они проходят параллельно;

- размещение проводников на разных сторонах печатной платы желательно перпендикулярно или под углом 45°.

Особые требования при разработке печатных плат предъявляются к контактным площадкам и ширине проводников.

6.3.2 Расчет конструктивно-технологических параметров

печатного монтажа

В данном разделе проводится расчет параметров печатного монтажа платы базового модуля. Двусторонняя печатная плата изготавливается комбинированным позитивным методом и имеет 3-й класс точности.

Рассчитаем проводящий рисунок печатной платы.

Исходные данные:

- размеры платы, мм, 140´120

- проводники на плате имеют покрытие сплавом «Розе».

Определим минимальный диаметр контактной площадки для отверстия под резисторы, расположенные на двухсторонней печатной плате второго класса точности.

Расчетная формула минимального диаметра контактной площадки имеет вид:

, (6.3.2.1)

где - номинальный диаметр металлизированного отверстия, равный 0.8мм;

- верхнее отклонение диаметра отверстия, равное 0мм при диаметре отверстия до 1мм (включительно) и 0,05мм при диаметре отверстия более 1мм;

- величина гарантийного пояска, равная 0,1мм;

- верхнее отклонение ширины проводника равное 0,1мм;

- диаметральное значение позиционного допуска расположения центра отверстия относительно номинального положения узла координатной сетки, равное 0,08мм;

- диаметральное значение позиционного допуска расположения контактной площадки относительно его номинального расположения, равное 0,15мм;

- нижнее предельное отклонение ширины проводника, равное 0.1мм.

Подставляя численные значения в формулу, имеем:

D=(0,8 + 0) + 2 × 0,1 + 0,1 + (0,082 + 0,152 + 0,12 )0.5 =1,297 (мм).

Таким образом, минимальный диаметр контактных площадок для металлизированных отверстий диаметром 0,8мм под выводы резисторов типа С2-23‑0.125, конденсаторов и д.р. равен 1,297мм.

Аналогично проводим расчет контактных площадок для отверстий диаметром 0,9; 1 и 1,2мм. Получаем диаметры контактных площадок 1,397; 1,497 и 1,747мм соответственно.

Проведем расчет платы базового модуля по постоянному току.

В результате расчета необходимо оценить наиболее важные электрические свойства печатной платы:

- нагрузочная способность проводников;

- сопротивление изоляции;

- диэлектрическая прочность основания платы.

Исходные данные для расчета:

- номинальное напряжение питания Uпит , В: 1510%

- допустимое падение напряжения в цепях питания Uпд, В: 1,5

- ток потребляемый всеми элементами, установленными на плате, I, А: 1,5

- максимальная длина печатного проводника для микросхем, L, м: 0.3

- толщина фольги печатной платы, h, м: 3.5×10-5

- удельное сопротивление проводника на печатной плате,, Ом×м: 1.72×10-8

Определим минимальную ширину проводника для выбранных выше значений по формуле:

(6.3.2.2)

м.

Таким образом, для нормальной работы устройства ширина печатного проводника в цепях «питания» и «земли» должна быть не менее 1,5×10- 4 м. Указанные цепи целесообразно выбрать шириной порядка 2мм.

Результаты расчета свидетельствуют о правильности выбора толщины фольги-, равной 35мкм. Толщина фольги выбиралась также с учетом максимальной адгезионной прочности печатной платы при расстоянии между печатными проводниками порядка 0.3...0.5мм максимально допустимое напряжение для текстолита, из которого изготовлена плата составляет не менее 50В. В данной принципиальной схеме модуля питания максимальное значение допустимого напряжения не превышает 15В, что более чем в 3 раза ниже допустимой величины. Таким образом, в разрабатываемой конструкции печатной платы обеспечивается с 3‑х кратным запасом диэлектрическая прочность основания платы.

6.4 Расчет механической прочности и системы виброударной защиты

Все виды РЭС подвергаются воздействию внешних механических нагрузок, которые передаются к каждой детали, входящей в конструкцию. Механические воздействия имеют место в работающей РЭС, если она установлена на подвижном объекте, или только при транспортировке ее в нерабочем состоянии, как в случае стационарной и некоторых видов возимой РЭС. При разработке конструкции РЭС необходимо обеспечить требуемую жесткость и механическую прочность элементов.

Под прочностью конструкции понимают нагрузку, которую может выдержать конструкция без остаточной деформации или разрушения. Повышение прочности конструкции достигается усилием конструктивной основы: контроля болтовых соединений, повышение прочности узлов методами заливки и обволакивания. Во всех случаях нельзя допустить образование механической колебательной системы.

Так как создаваемый прибор относится к наземной РЭС, то при транспортировке, случайных падениях и т.п. он может подвергаться динамическим воздействиям. Изменения обобщенных параметров механических воздействий на наземную РЭА находятся в пределах:

- Вибрации: (10...70)Гц, виброперегрузка n=(1...4)g;

- Ударные сотрясения: ny =(10...15)g, длительность t=(5...10)мс;

- Линейные перегрузки: nл =(2...4)g.

Несущие конструкции типа плат, панелей, шасси, каркасов, стоек и рам, работающие в условиях вибраций, должны удовлетворять требованию вибропрочности.

Расчет на вибропрочность несущих конструкций типа плат сводится к определению наибольших напряжений исходя из вида деформации, вызванной действием вибраций в определенном диапазоне частот, и сравнением полученных значений с допустимыми.

Этот расчет можно свести к нахождению собственной частоты колебаний ¦, при которой плата с определенными размерами и механическими характеристиками имеет прогибы и напряжения в пределах допустимых значений. При этом частота колебаний платы не должна быть близка к ее резонансной частоте.

Для расчета частоты собственных колебаний платы с расположенными на ней ЭРЭ существенным является выбор характера ее закрепления по контуру.

Крепл ение пласт ин к опоре может быть жё ст ким или подвижным. Всякое з акрепление (ког да нет уг ловых и лин ейн ых пе ремещении ) соотве тствует сварке, пайке, прижиму или з акрепл ению вин тами . Шарнирной опоре соответствует з акрепл ение в направляющих и в некоторых случаях з акрепл ение винтами или разъемом.

Используя эти данные, проведем проверочный расчет платы блока управления на виброустойчивость. Печатная плата должна обладать значительной усталостной долговечностью при воздействии вибрации.

Собственная частота кол ебаний монтажных плат с распре дел ённой нагрузкой определяется по формул е:

, (6. 4.1)

г де - коэффициент, з ависящий от способа з акрепл ения, определя­ется по таблицам;

D - цил индрич еская жёсткость пластины (платы), определяется

по формуле (6.4);

а - длина пластины (платы);

b - ширина пластины (платы);

М - масса пластины (плат с ЭРЭ).

Цил индрическая жёсткость пластины (платы) определяется по формул ам:

, (6.4.2)

где E – модул ь упруг ости;

h – тол щин а пластины (пл ат );

– коэ ффициент Пуассона;

Дл я ин женерных расчётов более удобно при з акреплении пластин (плат) по углам в чет ырёх точках собст венную частот у определять по форм ул е:

, (6.4.3)

Мет одика т аког о расчёта приведена в [10].

При определ ении собственной частоты платы базового модуля блока управления в первую очередь определим цилиндрическую жё ст кость плат ы по формул е (6.4.2), подставив следую щие исходные дан ные: h = 1,5 · 10 м; E= 3,02 · 10Па ( Е выбрал и из табли цы 4.16[10]).

D = 3,02 · 10· (1,5 · 10)/ 12 · (1 – 0,22 2 ) = 8,926 Па.

Теперь no формул е (6.4.3) определим собственную частот у, подставив сл едующие исходные данные: а = 0.14 м; b=0.12 м и М = 0.55 кг.

= 95,1 Гц

Судя по условиям эксплуат ации и особенностям блока управления сл едует отметить, что в использовани и демпферов и частотной отстройки, конструкция не нуждается.

Таким образом расчет показал, что плата базового модуля электромеханического замка будет обладать достаточной усталостной долговечностью при воздействии вибрации.

6.5 Полный расчет надежности

Исходными данными для расчета являются значения интенсивностей отказов всех радиоэлементов и элементов конструкций.

Расчет надежности устройства состоит из следующих этапов:

- Определяется суммарное значение интенсивности отказов по формуле:

,час-1 (6.5.1)

где n - число наименований радиоэлементов и элементов конструкции устройства;

- величина интенсивности отказа i‑го радиоэлемента, элемента конструкции с учетом заданных для него условий эксплуатации: коэффициента электрической нагрузки, температуры, влажности, технических нагрузок и т.п.;

Ni - количество радиоэлементов, элементов конструкции i‑го наименования.

- Определяется значение величины наработки на отказ T по формуле:

, (6.5.2)

- Определяется значение вероятности безотказной работы P(t) по формуле:

(6.5.3)

где t - заданное время безотказной работы устройства в часах.

Полученные результаты сравниваются с заданными.

Таблица 6.5.1 – Справочные и расчетные данные об элементах конструкции.

Наименование, тип элемента

Kн i

Ni

1

2

3

4

5

6

7

Конденсаторы

К50‑35

0,045

0,625

0,55

2,0

0,49

5

МO21

0,05

0,006

0,06

2,0

0,06

13

Микросхемы

ЭКР1830ВЕ31

D27C64

0,08

0,65

0,8

0,045

0,03

2

ЭКР1568РР1

ЭКР1554ИР22

К561ТЛ1

КР142ЕН5А

0,07

0,8

1,0

0,05

0,035

5

Окончание таблицы б.5.1

1

2

3

4

5

6

7

Резисторы С2‑23

0,01

0,03

0,4

2,0

0,08

37

Предохранители ВП1

0,5

0,2

0,5

2,0

5,0

4

Трансфоматор

0,05

0,1

0,1

2,0

0,1

1

Реле РЭС-49

0,6

0,25

0,6

1,0

3,6

1

Транзисторы

КТ 3107

КТ 3102

0,12

0,04

0,2

2,0

0,48

8

КТ 973

0,015

0,04

0,2

2,0

0,06

3

Диоды КД243

0,015

0,512

1,0

2,0

0,3

9

Диоды КД522

0,013

0,5

1,0

2,0

0,26

14

Диоды КС147

0,09

0,5

1,0

2,0

1,8

1

Светодиоды АЛ307В

0,07

0,35

0,8

2,0

1,12

3

Аккумулятор

1,4

0,2

0,3

2,0

8,4

1

Головка динамическая

2

0,2

0,2

2,0

8

1

Провода соединительные

0,03

0,001

2

2,0

1,2

6

Плата печатная

0,02

-

-

-

0,2

3

Держатель предохранителя

0,02

0,001

-

-

0,2

8

Соединение пайкой

0,004

0,001

3,00

2,0

0,24

262

Примечания:

- априорная номинальная интенсивность отказов при температуре окружающей среды 200 С и коэффициенте нагрузки KH i=1;

- коэффициент, зависящий от температуры и коэффициента нагрузки KH i;

- коэффициент, учитывающий климатические и механические нагрузки;

- расчетная величина интенсивности отказов по i‑му радиоэлементу, элементу конструкции, час-1 ;

Ni - число элементов i‑ой группы.

Расчетная величина интенсивности отказов I‑го элемента, приведенная в таблице 6.5.1, определяется по формуле:

, час-1 . (6.5.4)

Расчет выполняется для периода нормальной эксплуатации при следующих допущениях:

- Отказ элементов случаен и независим;

- Учитываются только внезапные отказы;

- Имеет место экспоненциальный закон надежности устройства.

Расчет надежности проводим при помощи персонального компьютера.

Полученные значения приведены в приложении .

наработка на отказ Т=66881.6 час

вероятность безотказной работы P(t)= 0.9015

Полученное значение наработки на отказ превышает заданное, равное 20000 часов, что гарантирует надежную работу разрабатываемого прибора.

6.6 Расчет технологичности изделия

Основным критерием, определяющим пригодность аппаратуры к промышленному выпуску, является технологичность конструкции.

Под технологичностью конструкции (ГОСТ 18831-83) понимают совокупность ее свойств, проявляемых в возможности оптимальных затрат труда, средств, материалов и времени при технической подготовке производства, изготовлении, эксплуатации и ремонте по сравнению с соответствующими показателями конструкций изделий того же назначения при обеспечении заданных показателей качества.

Номенклатура показателей технологичности сборочных единиц и блоков РЭА установлена отраслевым стандартом. В соответствии с ним все блоки РЭА условно разбиты на 4 класса:

1) радиотехнические;

2) электронные;

3) электромеханические;

4) коммутационные.

Для каждого класса установлены свои показатели технологичности в количестве не более 7. Расчет комплексного показателя технологичности конструкции проводится по формуле:

(6.6.1)

где S - общее количество относительных частных показателей.

Блок управления относится к радиотехническому.

Коэффициент механизации и автоматизации подготовки ЭРЭ к монтажу Км.п.ЭРЭ определяется по формуле:

(6.6.2)

где - количество ЭРЭ в штуках, подготовка которых осуществляется механизированным или автоматизированным способом;

- общее количество ЭРЭ в штуках.

В данном блоке все ЭРЭ подготавливаются автоматизированным путем, поэтому Км.п.ЭРЭ = 1.

Коэффициент автоматизации и механизации монтажа изделия Ка.м. определяется по формуле:

(6.6.3)

где - количество монтажных соединений, которые осуществляются механизированным или автоматизированным способом;

- общее количество монтажных соединений.

= 106; = 148.

Ка.м. =106 ¤ 148=0,725.

Коэффициент сложности сборки Кс.сб. определяется по формуле:

(6.6.4)

где - количество типоразмеров сборочных единиц, входящих

в изделие и требующих регулировки или подгонки в процессе сборки;

- общее количество типоразмеров сборочных единиц.

Так как, = 0, следовательно = 1.

Коэффициент механизации и автоматизации операций контроля и настройки электрических параметров Км.к.н. определяется по формуле:

(6.6.5)

где - количество операций контроля и настройки,

которые осуществляются механизированным или автоматизированным способом;

- общее количество операций контроля и настройки.

Hм.к.н. = 2; Hк.н. = 4, следовательно, по формуле (6.6.5):

= 2 ¤ 4 =0,5

Коэффициент прогрессивности формообразования деталей Кф определяется по формуле:

(6.6.6).

где - количество деталей в штуках, которые получены прогрессивными методами формообразования;

- общее количество деталей в изделии в штуках.

Дпр = 7, Д = 8, следовательно, по формуле (6.6.6):

= 7 ¤ 8 = 0,875

Коэффициент повторяемости ЭРЭ Кпов.ЭРЭ определяется по формуле:

(6.6.7)

где - количество типоразмеров ЭРЭ в изделии, определяемое габаритным размером ЭРЭ;

НТ.ЭРЭ = 11; НЭРЭ = 67.

= 1 – 11 ¤ 67 = 0,835

Коэффициент точности обработки деталей КТЧ определяется по формуле:

(6.6.8)

где - количество деталей, имеющих размеры с допуском по квалитету и ниже в штуках.

ДТЧ = 8; Д = 8.

Комплексный коэффициент технологичности рассчитывается по формуле (6.6.1).

Результаты расчета сведены в таблицу 6.6.1

Таблица 6.6.1 - Расчет комплексного показателя технологичности.

Показатели технологичности

Обознач.

1.Коэффициент механизации подготовки ЭРЭ к монтажу.

1.0

1.0

2.Коэффициент механизации и автоматизации монтажа изделия.

1.0

0.725

3.Коэффициент сложности сборки.

0.75

0.75

4.Коэффициент механизации контроля и настройки.

0.5

0.25

5.Коэффициент прогрессив­ности формообразования деталей

0.31

0.271

6.Коэффициент повторяемос­ти ЭРЭ

0,187

0.108

7.Коэффициент точности обработки

0,11

0,11

Сумма

3.857

3.214

Комплексный коэффициент технологичности

0,77

Нормативный показатель технологичности для установочной серии находится в пределах: КН = 0.75...0.8. Отношение К/КН > 1, следовательно, технологичность конструкции блока достаточная.

7 Обоснование выбора средств автоматизированного проектирования

7.1 Применение ЭВМ и САПР в курсовом проектировании

САПР – наилучшая форма организации процесса проектирования‚ основными частями которой являются технические средства, общее и специальное программное и математическое обеспечения, информационное обеспечение – банк данных, справочные каталоги, значения параметров, сведения о типовых решениях. Проектирование РЭА и создание оптимального технического решения в сжатые сроки связано с большими трудностями. Один из путей преодоления этих трудностей без существенного увеличения численности работающих - использование возможностей современных ЭВМ.

Под проектированием в широком смысле понимают использование имеющихся средств для достижения требуемой цели, координацию составных частей или отдельных действий для получения нужного результата. Процесс проектирования сложного РЭУ включает следующие основные этапы: эскизное проектирование, техническое проектирование, разработка КД на опытные образцы и их изготовление, испытания, освоение в производстве.

В связи с совершенствованием элементной базы РЭА, а также конструктивно-технологических характеристик проектируемых модулей всех типов, в несколько раз увеличивается трудоемкость составления технической документации. Все это приводит к необходимости совершенствования методов конструкторского проектирования РЭА, основой которых является автоматизация процесса конструирования.

Количественный и качественный выигрыш от применения ЭВМ состоит в следующем:

а) полностью или частично отпадает необходимость: в затратах на комплектующие изделия, материалы и конструктивные элементы, необходимые для изготовления макета; в измерительных приборах для определения характеристик конструкции; в оборудовании для испытаний конструкций.

б) значительно сокращается время определения характеристик, а следовательно, и доводки конструкции

в) появляется возможность: разрабатывать конструкции, содержащие элементы, характеристики которых известны, но самих элементов нет у разработчика; имитировать воздействия, воспроизведение которых при натурных испытаниях затруднено, требует сложного оборудования, сопряжено с опасностью для экспериментатора, а иногда и вообще невозможно; проводить анализ конструкции на разных частотах или в области высоких или низких температур, где применение измерительных приборов становится затруднительным.

7.2 Перечень и содержание конструкторских работ, выполненных с применением САПР

В данном курсовом проекте в ППП PCAD были выполнены чертежи схемы электрической принципиальной и печатной платы базового модуля. Чертежи деталей, схемы электрической структурной и сборочный чертеж базового модуля БУ были выполнены в ППП AutoCAD.


8 Анализ и учет требований эргономики и технической эстетики

Максимально допустимые размеры ЛП определяются исходя из горизонтального и вертикального угловых размеров зоны периферического зрения оператора и требуемого расстояния l до ЛП [17, рис. 2.1]. Максимальная длина ЛП равна:

, (8.1)

где a гор - горизонтальный угол обзора ЛП.

Максимальная высота

, (8.2)

где a верт - вертикальный угол обзора ЛП.

Для зоны периферического зрения оператора принимают a гор = 90°, a верт =75°. Применительно к разрабатываемому устройству l = 0,8 м при общем числе элементов Nэл = 2. Тогда

м.

м.

Минимально допустимые размеры ЛП определяются из следующих соображений. В соответствии с эргономическими требованиями в поле зрения, ограниченном углом зрения 10°, должно размещаться 4...8 элементов ЛП (для расчета принимаем 4 элемента). Тогда площадь зрения Sпз на ЛП, ограниченная указанным углом 10°, может быть вычислена по формуле

. (8.3)

м2 .

При числе элементов Nэл , размещаемых на ЛП, минимальная площадь ЛП, удовлетворяющая эргономическим требованиям, равна

. (8.4)

м2 .

Фактическую площадь ЛП выбирают, как

, (8.5)

где КЛП - коэффициент использования площади, обычно равный

КЛП = 0,4...0,7. Для разрабатываемой панели примем КЛП = 0,5.

Тогда

м2 .

Тогда линейные размеры находятся следующим образом.

Один из размеров выбирается из стандартного ряда габаритов, а оставшийся находится по (8.6). Выбираем высоту панели Н = 0,185 м.

, (8.6)

где Н - выбранный стандартный размер.

Подставляя значение Н в (8.6), получим

м.

Округляем значение до L = 0,135 м.

Полученные значения размеров ЛП соответствуют размерам корпуса блока управления электромеханическим замком, полученным в результате компоновочного расчета

9 Мероприятия по защите от коррозии, влаги, электрического удара, электромагнитных полей и механических нагрузок

9.1 Защита от коррозии

К мерам защиты от климатических воздействий относятся выбор соответствующих материалов и качество обработки поверхности изделия. 0сновного внимания при этом заслуживает опасность коррозии, под которой понимают распространяющееся от поверхности разрушение твердого тела под действием химических и электрохимических факторов. Защита от коррозии осуществляется путем образования естественных защитных слоев с помощью окраски, химической и электрохимической обработки поверхности и т.д. Защитный слой выбирается в соответствии с классом коррозионной нагрузки, запланированным сроком службы и положением детали в приборе или в пространстве.

Класс коррозионной нагрузки характеризует среднестатистическое состояние атмосферы в месте эксплуатации изделия, определяющее коррозионное воздействие атмосферы на него. Эти классы позволяют выбрать мероприятия, необходимые для защиты от коррозии.

Класс коррозионной нагрузки указывают комбинацией обозначений вида и степени нагрузки. Вид нагрузки определяет специфические загрязнения воздуха, вызывающие коррозию изделия, и обозначается буквой от А до D. Степень нагрузки зависит от климатической зоны, категории установки и содержания примесей и обозначается цифрой от 1 до 5

9.2 Выбор материала и защита поверхности

Выбор материала зависит от требований, связанных с выполнением функции прибора, и от коррозионных свойств. При этом необходимо принимать во внимание пару взаимодействующих материалов. Интенсивность коррозии зависит от разности потенциалов, возникающей в месте касания металлов.

При выборе материалов с учетом их электрохимических потенциалов необходимо руководствоваться следующим:

- разность потенциалов двух металлов должна быть малой;

- металлы следует покрывать защитными слоями, изолирующими их друг от друга;

- площади касания различных металлов должны быть малыми, так как увеличение этих площадей приводит к удалению контактной коррозии.

Нанесение металлического покрытия

Металл, имеющий более положительный потенциал по сравнению с контактирующим с ним металлом, необходимо покрыть защитным металлическим слоем в месте касания и вокруг него. Выбор металла для защитного слоя производится с учетом электрохимических потенциалов, технологии нанесения покрытия, условий коррозионного воздействия, а также класса коррозионной нагрузки; запланированного срока службы; материала и расположения детали; требуемого вида поверхности; способа получения защитного слоя.

Изоляция

Электрический контакт между двумя касающимися металлами может быть предотвращен с помощью использования, например, металлических клеев вместо электрически проводящих соединений или - в случае механически малонагруженных соединений - с помощью окраски.

Защита от воздействия вспомогательных материалов

Вспомогательные материалы, используемые при изготовлении детали, могут оказывать агрессивное воздействие как на эту деталь, так и на другие детали. Особенно активны при этом формальдегид, кислоты, хлориды. Мерами защиты могут быть ограничение воздействия (например, многократная промывка печатных плат от травильного раствора или использование бескислотных флюсов), нанесение защитных покрытий (например, покрытие печатных плат лаком), выбор рациональной конструкции узла (например, отдельное расположение батарей).

Кадмирование и цинкование

Из соображений экономичности для защитных покрытий наиболее часто используют цинк и кадмий. Коррозионная стойкость цинковых и кадмиевых покрытий может быть значительно повышена последующим пассивированием (хроматированием или фосфатированием). Контактным способом наносят серебро, никель, хром и олово, которые могут быть осаждены на основной металл из водных растворов. Вследствие ограничения запасов и постоянно повышающейся стоимости кадмия в электротехнике для покрытий наиболее часто используется цинк. Но полностью заменить кадмий цинком невозможно, так как последний очень чувствителен к коррозионным воздействиям, появляющимся внутри прибора при относительной влажности выше 75-80%. При использовании оцинкованных деталей необходимо, кроме того, предотвращать их длительный контакт с конденсатом при эксплуатации, транспортировке и хранении. В общем случае при выборе защитного покрытия следует учитывать коррозионные свойства отдельных слоев и агрессивных сред, которые могут появиться внутри прибора.

Окраска

Обычно окраску осуществляют в два приема: вначале наносят грунтовый, а затем покровный слой. Грунт предназначен для пассивации защищаемой поверхности, а также для обеспечения надежной связи покровного слоя с основным материалом. Покровный слой состоит из слоев грунтовой краски и лака, причем грунтовая краска предназначена для надежного соединения грунта с покровным слоем, служащим для непосредственной защиты от воздействий окружающей среды, а также для подготовки к нанесению лакового слоя.

Как показывает практика, коррозия деталей из черных металлов, особенно мелких, начинается на кромках, так как слой краски на них недостаточен. Здесь появляется подоплечная коррозия, которая постепенно приводит к отслоению защитного покрытия. Подобный процесс развивается в заклепках, резьбовых и сварных швах. Для предотвращения таких явлений необходима дополнительная защита кромок.

Преждевременное старение и разрушение пластмассовых деталей может наблюдаться при поглощении ими влаги, под действием агрессивных сред и тепловых нагрузок (сопровождающихся размягчением и охрупчиванием материалов), бактерий, термитов, плесени и т.д. Поэтому необходимо изучение свойств этих деталей в экстремальных внешних условиях.

9.3 3ащита от воздействия влаги

Приборы требуют защиты от влаги для предотвращения от корродирования, которое влечет за собой сокращение срока службы, уменьшение надежности, изменение электрических, и механических параметров, вплоть до отказа. Одним из средств защиты приборов и конструктивных элементов от влаги является герметизация, которая может быть осуществлена только при использовании металлов для герметичных корпусов и неорганических материалов в качестве герметиков. В последнее время по экономическим причинам все более широкое применение находят пластмассы. Однако пластмассы в большей или меньшей степени влагонепроницаемы, что требует их очень тщательного отбора в каждом конкретном случае использования.

Как правило, все материалы, особенно пластмассы, имеют требуемые свойства только при определенных температурах и влажности. При слишком большой влажности пластмассы могут набухать, при слишком сухой атмосфере - охрупчиваться. При падении температуры ниже точки росы, возможно также осаждение воды.

В разрабатываемой конструкции защита от воздействия влаги предусмотрена нанесением лакокрасочных покрытий.

9.4 Защита от электрического удара

Защиту от электрического удара для электронных приборов и устройств подразделяют на защиту от непосредственного касания при нормальной работе и защиту от косвенного касания в случае ошибки.

Электронные приборы и устройства аппаратуры связи, электронные измерительные приборы и бытовые устройства, кроме общих требований к электрическим установкам, должны дополнительно отвечать также и специальным требованиям к их безопасности.

Защита от прямого касания при нормальной работе

Все детали (например, проводники), во время работы, находящиеся под напряжением, должны быть изолированы, экранированы или расположены так, чтобы была предотвращена возможность их касания обслуживающим персоналом. Кожухи и экраны приборов должны быть выполнены так, чтобы их нельзя было снять без использования инструментов.

В электронных приборах все находящиеся под напряжением выводы, касание которых опасно, должны быть соответствующим защищены и расположены на определенном безопасном расстоянии от других токоведущих элементов, касание которых возможно. Защита должна быть гарантирована при касании элементов в любой последовательности. Отверстия в корпусах должны быть выполнены так, чтобы была обеспечена степень защиты, требуемая для данного прибора. Правильность расположения отверстий в электронных бытовых приборах проверяют с помощью испытательных оправок.

Защита от косвенного касания в случае ошибки

Открытые для касания детали электронных приборов и устройств, не находящиеся под напряжением (например, корпуса) должны быть выполнены так, чтобы даже в аварийном случае на этих деталях не могло появиться опасное напряжение. Для всех электротехнических устройств и электронных приборов номинальным напряжением U=1кВ (для переменного тока) и U=1,5кВ (для постоянного тока) необходимое последовательное выполнение требований в соответствии с классом их защиты. Защитные мероприятия не требуются: для приборов с установившемся током короткого замыкания 20 мА; для приборов с батарейным электропитанием и преобразователем напряжения, если выходная мощность преобразователя не превышает 2 Вт при его внутреннем сопротивлении не менее 10 кОм; для элементов приборов, которых можно касаться только при снятии напряжения и в которых приняты меры для предотвращения подачи напряжения на касаемые детали (например, на детали внутри выдвижных блоков); для металлических деталей крепления проводов и кабелей.

Степень защиты не должна снижаться в результате работы прибора или воздействий со стороны окружающей среды. Так, в электронных приборах резьбовые соединения должны быть дополнительно застопорены с помощью пружинных шайб, а паяные - путем закрутки или загиба концов проводов в отверстиях для пайки, чтобы защита от касания не могла быть снижена при случайном ослаблении этих соединений.

Классы защиты

Классом защиты определяются мероприятия, в результате которых должно быть предотвращено появление опасных в отношении касания напряжений на деталях электротехнических и электронных устройств и приборов, при нормальных условиях, не находящихся под напряжением. При этом различают класс защиты I (защитное заземление, для чего предусматриваются, например, места подключения защитного проводника, соединители (штекеры) с защитным контактом и т.д.), класс защиты II (защитная изоляция) и класс защиты III (защитное пониженное напряжение).

В разрабатываемой конструкции защита от поражения электрическим током предусмотрена защитной изоляцией.

9.5 Защита от действия внешних электромагнитных полей

Эффективной защитой от воздействия электрических полей является экранирование, которое снижает энергию внешнего электромагнитного поля, а также помехи и влияние прибора на внешнюю среду. Причинами паразитных наводок на прибор являются внешние источники помех, а также образование межкаскадных связей под влиянием электростатических и электромагнитных полей.

В зависимости от типа и частоты поля различают экранирование электрических и магнитных полей высокой и низкой частот. Часть электромагнитной энергии отражается от поверхности экрана, часть проникает в него. В свою очередь, определенная доля энергии, проникшая в экран, отражается от его другой стенки, остальная энергия проходит сквозь экран насквозь. Достигаемое при этом ослабление поля называется экранирующим действием, отношение напряженностей полей за экраном и перед ним - эффективностью экранирования, а выражаемый в децибелах логарифм величины, обратной этому коэффициенту, - затуханием экранирования.

Корпус блока управления замком электромеханическим выполнен из листовой стали, что обеспечивает защиту элементов схемы от внешних электромагнитных полей.

9.6 Защита от механических нагрузок

Механические нагрузки, которые испытывают приборы и окружающая среда, обусловлены, в частности, динамическими воздействиями на них в виде колебаний и ударов. Защита от этих нагрузок возможна с помощью демпфирования, изоляции и гашения колебаний с помощью дополнительных масс. Целями мероприятий по защите от воздействия механических нагрузок являются: обеспечение выполнения прибором, испытывающим механические нагрузки, заданной ему функции; повышение точности, надежности и срока службы приборов, защита обслуживающего персонала от шума и вибраций.

При воздействии определенных входных величин на систему прибор-место установки появляющиеся деформации рабочих элементов, напряжения конструктивных элементов или колебания соседних деталей не должны превышать заданных значений.

Снижение колебательных и ударных нагрузок

При проектировании необходим точный расчет их колебаний, который позволяет исключить в последующем работы по снижению колебательных нагрузок. Точный расчет предполагает точное знание параметров колебаний рассматриваемой системы. Различают следующие мероприятия по снижению колебательных и ударных нагрузок:

¾ первичные мероприятия - уменьшение влияния возбуждающих величин путем демпфирования, активной изоляцией или гашения колебаний в месте их возникновения;

¾ вторичные мероприятия - изменение передаточной функции колебательной системы с помощью предотвращения ее резонанса и использования пассивной изоляции.

В принципе, конструктор может снизить механические колебательные и ударные нагрузки на прибор и окружающую среду тремя путями: демпфированием; изоляцией колебательной системы и гашением этих нагрузок. Гашение колебаний применяется в станко - и в крупном приборостроении.

Демпфирование колебаний и ударов

Снижение колебательных и ударных нагрузок путем демпфирования возможно за счет механических или электрических демпферов. В качестве механических демпферов могут использоваться также клапаны, заслонки (дроссели) или сильфоны.

Изоляция колебаний и ударов

Под изоляцией колебаний понимают уменьшение или предотвращение распространения колебаний с помощью изоляторов (упругих элементов).

Для эффективной изоляции частота возбуждения должна значительно отличаться от собственной частоты изолятора, так как в ином случае могут развиваться так называемые частоты пробоя. Прибор должен быть установлен или подвешен на изоляторах. При этом изоляция колебаний будет эффективной, если собственные частоты изолируемой системы меньше самой низкой гармоники частоты возбужден-ния.

Конструктивно блок управления замком электромеханическим предусматривает установку в помещении, поэтому защита от воздействия вибраций и ударных нагрузок предусматривается у здания в целом.


Литература

1. Базовый принцип конструирования РЭА / Е.М. Парфенов, В.Ф. Афанасенко, В.И. Владимиров, Е.В. Саушкин; Под ред. Е.М. Парфенова. - М.: Радио и связь, 1981.

2. Варламов Р.Г. Компоновка радиоэлектронной аппаратуры. Изд. 2-е переработанное. - М.: Сов. радио, 1975.

3. Роткоп Л.Л., Спокойный Ю.Е. Обеспечение тепловых режимов при конструировании радиоэлектронной аппаратуры. - М.: Сов. радио, 1976.

4. Конструирование радиоэлектронных средств: Учеб. пособие для студентов специальности «Конструирование и технология радиоэлектронных средств» / Н.С. Образцов, В.Ф. Алексеев, С.Ф. Ковалевич и др.; Под ред. Н.С. Образцова. - Мн.: БГУИР, 1994.

5. Гелль П.П., Иванов-Есипович Н.К. Конструирование и микроминиатюризация радиоэлектронной аппаратуры. - Л.: Энергоатомиздат, 1984.

6. Справочник конструктора-приборостроителя. Проектирование. Основные нормы / В.Л. Соломахо, Р.И. Томилин, Б.И. Цитович, Л.Г. Юдовин. - Мн.: Выш.шк., 1988.

7. Поляков К.П. Конструирование приборов и устройств радиоэлектронной аппаратуры. - М.: Радио и связь, 1982.

8. Каленкович Н.И. и др. Механические воздействия и защита РЭС: Учеб.пособие для вузов / Н.И. Каленкович, Е.П. Фастовец, Ю.В. Шамгин. - Мн.: Выш.шк., 1989.

9. Хлопов Ю.Н., Боровиков С.М., Алефиренко В.М., Несмелов В.С., Алексеев В.Ф., Воробьева Ж.С., Образцов Н.С. Методическое пособие к курсовому проектированию по курсу «Конструирование и микроминиатюризация РЭА». - Мн.: РТИ, 1983.

10. Карпушин В.Б. Вибрации и удары в радиоэлектронной аппаратуре. - М.: Сов.радио, 1971.

11. Шимкович А.А. Механические воздействия и защита радиоэлектронных средств. Методическое пособие по курсу «Конструирование радиоэлектронных средств», Часть 2. - Мн.: РТИ, 1991.

12. Гурский М.С. Лаб. практикум по курсу «Инженерные методы защиты радиоэлектронных средств от дестабилизирующих факторов», Часть 1. - Мн.: БГУИР, 1984.

13. Парфенов Е.М. и др. Проектирование конструкций радиоэлектронной аппаратуры: Учеб.пособие для вузов / Е.М. Парфенов, Э.Н. Камышная, В.П. Усачев. - М.: Радио и связь, 1989.

14. Проектирование приборных панелей радиоэлектронной аппаратуры. Метод.пособие по курсу «Конструирование и микроминиатюризация радиоэлектронной аппаратуры» / Ю.В. Шамгин, В.М. Алефиренко, Е.П. Фастовец и др. - Мн.: МРТИ, 1976.

15. Введение в эргономику. / Под.ред. В.П. Зинченко. - М.: Сов.радио, 1974.

16. Разработка и оформление конструкторской документации РЭА / Под.ред. Э.Т. Романычевой. - М.: Радио и связь, 1989.

17. Проектирование приборных панелей радиоэлектронной аппаратуры. Метод.пособие по курсу «Конструирование и микроминиатюризация радиоэлектронной аппаратуры» / Ю.В. Шамгин, В.М. Алефиренко, Е.П. Фастовец и др. - Мн.: МРТИ, 1976.

18. Справочник. Полупроводниковые приборы: диоды выпрямительные, стабилитроны, тиристоры. / Под общей редакцией А.В.Голомедова – М.: ²Радио и связь², 1989.

19. Справочник. Полупроводниковые приборы: транзисторы. – Л.: ²Энергоатомиздат², 1984.

ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ

ДОБАВИТЬ КОММЕНТАРИЙ [можно без регистрации]

Ваше имя:

Комментарий