Смекни!
smekni.com

Нечеткие множества в системах управления (стр. 4 из 11)

"xÎEmA(x1, x1,..., xn) = w1mA1(x) + w2mA2(x) + ... + wnmAi(x).

Декартово произведение нечетких множеств. Пусть A1, A2, ..., An - нечеткие подмножества универсальных множеств E1, E2, ..., En соответственно. Декартово произведение A = A1´A2´ ...´An является нечетким подмножеством множества E = E1´E2´...´En с функцией принадлежности:

mA(x1, x1, ..., xn) = min{ mA1(x1), mA2(x2) , ... , mAi(xn) }.

Оператор увеличения нечеткости используется для преобразования четких множеств в нечеткие и для увеличения нечеткости нечеткого множества.

Пусть A - нечеткое множество, E - универсальное множество и для всех xÎE определены нечеткие множества K(х). Совокупность всех K(х) называется ядром оператора увеличения нечеткости Ф. Результатом действия оператора Ф на нечеткое множество A является нечеткое множество вида:

Ф(A, K) =

mA (x)K(х),

где mA(x)K(х) - произведение числа на нечеткое множество.

Пример:

E = {1,2,3,4};

A = 0,8/1+0,6/2+0/3+0/4;

K(1) = 1/1+0,4/2;

K(2) = 1/2+0,4/1+0,4/3;

K(3) = 1/3+0,5/4;

K(4) = 1/4.

Тогда

Ф(A,K) = mA(1) K(1) ÈmA(2)K(2) ÈmA(3)K(3)ÈmA(4)K(4) =

= 0,8(1/1+0,4/2) È 0,6(1/2+0,4/1+0,4/3) =

= 0,8/1+0,6/2+0,24/3.

Четкое множество a-уровня (или уровня a). Множеством a-уровня нечеткого множества A универсального множества E называется четкое подмножество Aa универсального множества E, определяемое в виде:

Aa ={x/mA(x)³a}, где a£1.

Пример:A = 0,2/x1 + 0/x2 + 0,5/x3 + 1/x4 ,

тогда A0.3 = {x3,x4},

A0.7 = {x4}.

Достаточно очевидное свойство: если a1³a2 , то Aa1£Aa2 .

Теорема о декомпозиции. Всякое нечеткое множество A разложимо по его множествам уровня в виде:

A =

aA a, где aAa - произведение числа a на множество A, и a "пробегает" область значений M функции принадлежности нечеткого множества A.

Пример: A = 0,1/x1 + 0/x2 + 0,7/x3 + 1/x4 представимо в виде:

A = 0,1(1,0,1,1) È 0,7(0,0,1,1,) È 1(0,0,0,1)=

= (0,1/x1 + 0/x2 + 0,1/x3 + 0,1/x4)È (0/x1 + 0/x2 + 0,7/x3 + 0,7/x4

È(0/x1 + 0/x2 + 0/x3 + 1/x4) = 0,1/x1 +0/x2 +0,7/x3 +1/x4 .

Если область значений функции принадлежности состоит из n градаций a1£a2£a3£ ...£an, то A (при фиксированных значениях градаций) представимо в виде:

A =

aiAai,

т.е. определяется совокупностью обычных множеств { Aa1, Aa2, ..., Aai}, где Aa1³Aa2³ , ..., ³Aai.

Расстояние между нечеткими множествами, индексы нечеткости

Пусть A и B - нечеткие подмножества универсального множества E. Введем понятие расстояния r(A, B) между нечеткими множествами. При введении расстояния обычно предъявляются следующие требования:

r(A, B) ³ 0 - неотрицательность;

r(A, B) = r(B, A) - симметричность;

r(A, B) < r(A, C) + r(C, B).

К этим трем требованиям можно добавить четвертое: r(A, A) = 0.

Определим следующие расстояния по формулам:

Расстояние Хемминга (или линейное расстояние):

r(A, B) =

½mA(xi) - mB(xi)½ .

Очевидно, что r(A, B)Î[0, n].

Евклидово или квадратичное расстояние:

e(A, B) =

, e(A, B)Î[0,
].

Относительное расстояние Хемминга:

r(A, B) =

, r(A, B)Î[0,1].

Относительное евклидово расстояние:

e(A, B)=

, e(A, B)Î[0,1].

Расстояние Хемминга и квадратичное расстояние, в случае когда E бесконечно, определяются аналогично с условием сходимости соответствующих сумм:

если E счетное, то

r(A, B) =

½mA(xi) - mB(xi)½ ,

e(A, B) =

;

если E = R (числовая ось), то

r(A, B) =

,

e(A, B) =

.

Замечание. Здесь приведены два наиболее часто встречающихся определения понятия расстояния. Разумеется, для нечетких множеств можно ввести и другие определения понятия расстояния.

Перейдем к индексам нечеткости или показателям размытости нечетких множеств.

Если объект х обладает свойством R (порождающим нечеткое множество A) лишь в частной мере, т.е.

0<mA(x)<1, то внутренняя неопределенность, двусмысленность объекта х в отношении R проявляется в том, что он, хотя и в разной степени, принадлежит сразу двум противоположным классам: классу объектов, "обладающих свойством R", и классу объектов, "не обладающих свойством R". Эта двусмысленность максимальна, когда степени принадлежности объекта обеим классам равны, т.е. mA(x) =

(x) = 0,5, и минимальна, когда объект принадлежит только одному классу, т.е. либо mA(x) = 1 и
(x)
= 0, либо mA(x) = 0 и
(x)
= 1.

В общем случае показатель размытости нечеткого множества можно определить в виде функционала d(A) со значениями в R (положительная полуось), удовлетворяющего условиям:

d(A) = 0 тогда и только тогда, когда А - обычное множество;

d(A) максимально тогда и только тогда, когда mA(x) = 0.5 для всех xÎE.

d(A)d(B), если A является заострением B, т.е.

mA(x)£mB(x) при mB(x) < 0,5;

mA(x)³mB(x) при mB(x) > 0,5;

mA(x)- любое при mB(x) = 0,5.

d(A) = d(

) - симметричность по отношению к 0,5.

d(AÈB)+d(AÇB) = d(A)+d(B).

Замечание. Приведенная система аксиом при введении конкретных показателей размытости часто используется частично, т.е., например, ограничиваются свойствами P1, P2 и P3, либо некоторые свойства усиливаются или ослабляются в зависимости от решаемой задачи.

Рассмотрим индексы нечеткости (показатели размытости), которые можно определить, используя понятие расстояния.

Обычное множество, ближайшее к нечеткому

Пусть A - нечеткое множество. Вопрос: какое обычное множество AÌE является ближайшим к A, т.е. находится на наименьшем евклидовом расстоянии от нечеткого множества A. Таким подмножеством, обозначаемым A, является подмножеством с характеристической функцией:

.

Обычно принимают mA(xi) = 0, если mA(xi) = 0,5.

Используя понятие обычного множества, ближайшего к нечеткому, введем следующие индексы нечеткости нечеткого множества А.

Линейный индекс нечеткости:

Здесь r(A, A) - линейное (хеммингово) расстояние, множитель -

обеспечивает выполнение условия 0<d(A)<1.

Квадратичный индекс нечеткости

, 0<d(A)<1.

Здесь e(A, A) - квадратичное (евклидово) расстояние.

Замечания.

1. Мы ввели линейный и квадратичный индексы нечеткости, используя понятие расстояния и понятие обычного множества, ближайшего к нечеткому. Эти же индексы можно определить, используя операцию дополнения, следующим образом:

- линейный индекс,

- квадратичный индекс.

2. Отметим следующие свойства, связанные с ближайшим обычным множеством:

АÇВ=АÇВ,