регистрация / вход

Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде

ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ КАФЕДРА СТАТИСТИКИ О Т Ч Е Т о результатах выполнения компьютерной лабораторной работы Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel

ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ

КАФЕДРА СТАТИСТИКИ

О Т Ч Е Т

о результатах выполнения

компьютерной лабораторной работы

Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel

Вариант № 65

Выполнил: ст. III курса гр. 3

Широких Е.Б.

Проверил: доц. Левчегов О.Н.

Липецк 2011 г.

1. Постановка задачи статистического исследования

Корреляционно-регрессионный анализ взаимосвязи признаков является составной частью проводимого статистического исследования деятельности 30-ти предприятий и частично использует результаты ЛР-1.

В ЛР-2 изучается взаимосвязь между факторным признаком Среднегодовая стоимость основных производственных фондов (признак Х ) и результативным признаком Выпуск продукции (признак Y ), значениями которых являются исходные данные ЛР-1 после исключения из них аномальных наблюдений.

Исходные данные
Номер предприятия Среднегодовая стоимость основных производственных фондов, млн.руб. Выпуск продукции, млн. руб.
5 1205,00 945,00
23 1299,50 1255,50
27 1407,50 1080,00
1 1448,00 1390,50
8 1502,00 1485,00
32 1529,00 1566,00
22 1637,00 1336,50
19 1677,50 1282,50
2 1704,50 1525,50
3 1758,50 1701,00
13 1772,00 1809,00
26 1812,50 1660,50
9 1839,50 1741,50
4 1853,00 1890,00
28 1893,50 1687,50
17 1907,00 1728,00
6 1947,50 1620,00
14 1947,50 1971,00
25 1947,50 1755,00
7 2001,50 2187,00
31 2082,50 1755,00
18 2109,50 2052,00
10 2123,00 2173,50
20 2136,50 1755,00
24 2177,00 2011,50
29 2190,50 1849,50
15 2231,00 2389,50
12 2325,50 2295,00
21 2379,50 2362,50
16 2555,00 2565,00

В процессе статистического исследования необходимо решить ряд задач.

1. Установить наличие статистической связи между факторным признаком Х и результативным признаком Y графическим методом.

2. Установить наличие корреляционной связи между признаками Х и Y методом аналитической группировки.

3. Оценить тесноту связи признаков Х и Y на основе эмпирического корреляционного отношения η .

4. Построить однофакторную линейную регрессионную модель связи признаков Х и Y , используя инструмент Регрессия надстройки Пакет анализа, и оценить тесноту связи признаков Х и Y на основе линейного коэффициента корреляции r .

5. Определить адекватность и практическую пригодность построенной линейной регрессионной модели, оценив:

а) значимость и доверительные интервалы коэффициентов а0 , а1 ;

б) индекс детерминации R2 и его значимость;

в) точность регрессионной модели.

6. Дать экономическую интерпретацию:

а) коэффициента регрессии а1 ;

б) коэффициента эластичности К Э ;

в) остаточных величин ε i .

7. Найти наиболее адекватное нелинейное уравнение регрессии с помощью средств инструмента Мастер диаграмм .


2. Выводы по результатам выполнения лабораторной работы

Задача 1 . Установление наличия статистической связи между факторным признаком Х и результативным признаком Y графическим методом.

Статистическая связь является разновидностью стохастической (случайной) связи, при которой с изменением факторного признака X закономерным образом изменяется какой–либо из обобщающих статистических показателей распределения результативного признака Y.

Вывод:

Точечный график связи признаков (диаграмма рассеяния, полученная в ЛР-1 после удаления аномальных наблюдений) позволяет сделать вывод, что имеет место статистическая связь. Предположительный вид связи – линейная прямая.

Задача 2. Установление наличия корреляционной связи между признаками Х и Y методом аналитической группировки.

Корреляционная связь важнейший частный случай стохастической статистической связи, когда под воздействием вариации факторного признака Х закономерно изменяются от группы к группе средние групповые значения результативного признака Y (усредняются результативные значения , полученные под воздействием фактора ). Для выявления наличия корреляционной связи используется метод аналитической группировки.

Вывод:

Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что с увеличением значений факторного признака Х закономерно увеличиваются средние групповые значения результативного признака . Следовательно, между признаками Х и Y существует корреляционная связь.

Задача 3. Оценка тесноты связи признаков Х и Y на основе эмпирического корреляционного отношения.

Для анализа тесноты связи между факторным и результативным признаками рассчитывается показатель η – эмпирическое корреляционное отношение, задаваемое формулой

,

где и - соответственно межгрупповая и общая дисперсии результативного признака Y - Выпуск продукции (индекс х дисперсии означает, что оценивается мера влияния признака Х на Y).

Для качественной оценки тесноты связи на основе показателя эмпирического корреляционного отношения служит шкала Чэддока:

Значение η 0,1 – 0,3 0,3 – 0,5 0,5 – 0,7 0,7 – 0,9 0,9 – 0,99
Сила связи Слабая Умеренная Заметная Тесная Весьма тесная

Результаты выполненных расчетов представлены в табл. 2.4 Рабочего файла.

Вывод:

Значение коэффициента η =0,56, что в соответствии с оценочнойшкалой Чэддока говорит о заметной степени связи изучаемых признаков.

Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа и оценка тесноты связи на основе линейного коэффициента корреляции r.

4.1. Построение регрессионной модели заключается в нахождении аналитического выражения связи между факторным признаком X и результативным признаком Y.

Инструмент Регрессия на основе исходных данных (xi , yi ),производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии , а также вычисление ряда показателей, необходимых для проверки адекватности построенного уравнения исходным (фактическим) данным.

Примечание. В результате работы инструмента Регрессия получены четыре результативные таблицы (начиная с заданной ячейки А75). Эти таблицы выводятся в Рабочий файл без нумерации, поэтому необходимо присвоить им номера табл.2.5 – табл.2.8 в соответствии с их порядком.

Вывод:

Рассчитанные в табл.2.7 (ячейки В91 и В92) коэффициенты а0 и а1 позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения -728,665+1,089х.

4.2. В случае линейности функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по построенной модели, используется линейный коэффициент корреляции r.

Значение коэффициента корреляции r приводится в табл.2.5 в ячейке В78 (термин "Множественный R").

Вывод:

Значение коэффициента корреляции r =0,913 , что в соответствии с оценочной шкалой Чэддока говорит о весьма тесной степени связи изучаемых признаков.

Задача 5. Анализ адекватности и практической пригодности построенной линейной регрессионной модели.

Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи.

Оценка соответствия построенной регрессионной модели исходным (фактическим) значениям признаков X и Y выполняется в 4 этапа:

1) оценка статистической значимости коэффициентов уравнения а0 , а1 и определение их доверительных интервалов для заданного уровня надежности;

2) определение практической пригодности построенной модели на основе оценок линейного коэффициента корреляции r и индекса детерминации R2 ;

3) проверка значимости уравнения регрессии в целом по F-критерию Фишера;

4) оценка погрешности регрессионной модели.

5.1. Оценка статистической значимости коэффициентов уравнения а0 , а1 и определение их доверительных интервалов

Так как коэффициенты уравнения а0 , а1 рассчитывались, исходя из значений признаков только для 30-ти пар (xi , yi ), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0 , а1 . Поэтому необходимо:

1. проверить значения коэффициентов на неслучайность (т.е. узнать, насколько они типичны для всей генеральной совокупности предприятий отрасли);

2. определить (с заданной доверительной вероятностью 0,95 и 0,683) пределы, в которых могут находиться значения а0 , а1 для генеральной совокупности предприятий.

Для анализа коэффициентов а0 , а1 линейного уравнения регрессии используется табл.2.7, в которой:

– значения коэффициентов а0 , а1 приведены в ячейках В91 и В92 соответственно;

– рассчитанный уровень значимости коэффициентов уравнения приведен в ячейках Е91 и Е92;

– доверительные интервалы коэффициентов с уровнем надежностиР=0,95 и Р=0,683 указаны в диапазоне ячеек F91:I92.

5.1.1 . Определение значимости коэффициентов уравнения

Уровень значимости – это величина α=1–Р, где Р – заданный уровень надежности (доверительная вероятность).

Режим работы инструмента Регрессия использует по умолчанию уровень надежности Р=0,95. Для этого уровня надежности уровень значимости равен α = 1 – 0,95 = 0,05. Этот уровень значимости считается заданным.

В инструменте Регрессия надстройки Пакет анализа для каждого из коэффициентов а0 и а1 вычисляется уровень его значимости αр , который указан в результативной таблице (табл.2.7 термин "Р-значение"). Если рассчитанный для коэффициентов а0 , а1 уровень значимости αр , меньше заданного уровня значимости α= 0,05, то этот коэффициент признается неслучайным (т.е. типичным для генеральной совокупности), в противном случае – случайным.

Примечание. В случае, если признается случайным свободный член а0 , то уравнение регрессии целесообразно построить заново без свободного члена а0 . В этом случае в диалоговом окне Регрессия необходимо задать те же самые параметры за исключением лишь того, что следует активизировать флажок Константа-ноль (это означает, что модель будет строиться при условии а0 =0). В лабораторной работе такой шаг не предусмотрен.

Если незначимым (случайным) является коэффициент регрессии а1 , то взаимосвязь между признаками X и Yв принципене может аппроксимироваться линейной моделью.

Вывод:

Для свободного члена а0 уравнения регрессии рассчитанный уровень значимости есть αр =0,1. Так как он больше заданного уровня значимости α=0,05, то коэффициент а0 признается случайным .

Для коэффициента регрессии а1 рассчитанный уровень значимости есть αр = Так как он меньше заданного уровня значимости α=0,05, то коэффициент а1 признается типичным.

5.1.2. Зависимость доверительных интервалов коэффициентов уравнения от заданного уровня надежности

Доверительные интервалы коэффициентов а0 , а1 построенного уравнения регрессии при уровнях надежности Р=0,95 и Р=0,683 представлены в табл.2.7, на основе которой формируется табл.2.9.

Таблица 2.9

Границы доверительных интервалов коэффициентов уравнения

Коэффициенты Границы доверительных интервалов
Для уровня надежности Р=0,95 Для уровня надежности Р=0,683
нижняя верхняя нижняя верхняя
а0 -1622,1 164,8 -1173,04 -284,3
а1 0,90 1,28 1,00 1,2

Вывод:

В генеральной совокупности предприятий значение коэффициента а0 следует ожидать с надежностью Р=0,95 в пределах-1622,1а0 164,8 значение коэффициента а1 в пределах 0,90а1 1,28. Уменьшение уровня надежности ведет к сужению доверительных интервалов коэффициентов уравнения.

Определение практической пригодности построенной регрессионной модели.

Практическую пригодность построенной моделиможно охарактеризовать по величине линейного коэффициента корреляции r:

· близость к единице свидетельствует о хорошей аппроксимации исходных (фактических) данных с помощью построенной линейной функции связи ;

· близость к нулю означает, что связь между фактическими данными Х и Y нельзя аппроксимировать как построенной, так и любой другой линейной моделью, и, следовательно, для моделирования связи следует использовать какую-либо подходящую нелинейную модель.

Пригодность построенной регрессионной модели для практического использования можно оценить и по величине индекса детерминации R2 , показывающего, какая часть общей вариации признака Y объясняется в построенной модели вариацией фактора X.

В основе такой оценки лежит равенство R = r(имеющее место для линейных моделей связи), а также шкала Чэддока, устанавливающая качественную характеристику тесноты связи в зависимости от величины r.

Согласно шкале Чэддока высокая степень тесноты связи признаков достигается лишь при >0,7, т.е. при >0,7. Для индекса детерминации R2 это означает выполнение неравенства R2 >0,5.

При недостаточно тесной связи признаков X, Y (слабой, умеренной, заметной) имеет место неравенство 0,7, а следовательно, и неравенство .

С учетом вышесказанного, практическая пригодность построенной модели связи оценивается по величине R2 следующим образом:

· неравенство R2 >0,5 позволяет считать, что построенная модель пригодна для практического применения, т.к. в ней достигается высокая степень тесноты связи признаков X и Y, при которой более 50% вариации признака Y объясняется влиянием фактора Х;

· неравенство означает, что построенная модель связи практического значения не имеет ввиду недостаточной тесноты связи между признаками X и Y, при которойменее 50% вариации признака Y объясняется влиянием фактора Х, и, следовательно, фактор Х влияет на вариацию Y в значительно меньшей степени, чем другие (неучтенные в модели) факторы.

Значение индекса детерминации R2 приводится в табл.2.5 в ячейке В79 (термин "R - квадрат").

Вывод:

Значение линейного коэффициента корреляции r и значение индекса детерминации R2 согласно табл. 2.5 равны: r=0,91, R2 =0,83. Поскольку и , то построенная линейная регрессионная модель связи пригодна для практического использования.

Общая оценка адекватности регрессионной модели по F-критерию Фишера

Адекватность построенной регрессионной модели фактическим данным (xi , yi ) устанавливается по критерию Р.Фишера, оценивающему статистическую значимость (неслучайность) индекса детерминации R2 .

Рассчитанная для уравнения регрессии оценка значимости R2 приведена в табл.2.6 в ячейке F86 (термин "Значимость F"). Если она меньше заданного уровня значимости α=0,05, то величина R2 признается неслучайной и, следовательно, построенное уравнение регрессии может быть использовано как модель связи между признаками Х и Y для генеральной совокупности предприятий отрасли.

Вывод:

Рассчитанный уровень значимостиαр индекса детерминации R2 есть αр =. Так как он меньше заданного уровня значимости α=0,05, то значение R2 признается типичным и модель связи между признаками Х и Y-728,665+1,089х. применима для генеральной совокупности предприятий отрасли в целом.

Погрешность регрессионной модели можно оценить по величине стандартной ошибки построенного линейного уравнения регрессии . Величина ошибки оценивается как среднее квадратическое отклонение по совокупности отклонений исходных (фактических) значений yi признака Y от его теоретических значений , рассчитанных по построенной модели.

Погрешность регрессионной модели выражается в процентах и рассчитывается как величина .100.

В адекватных моделях погрешность не должна превышать 12%-15%.

Значение приводится в выходной таблице "Регрессионная статистика" (табл.2.5) в ячейке В81 (термин "Стандартная ошибка"), значение – в таблице описательных статистик (ЛР-1, Лист 1, табл.3, столбец 2).

Вывод:

Погрешность линейной регрессионной модели составляет что подтверждает адекватность построенной модели-728,665+1,089х

Задача 6. Дать экономическую интерпретацию:

1) коэффициента регрессии а1 ;

3) остаточных величин i .

2) коэффициента эластичности КЭ ;

6.1. Экономическая интерпретация коэффициента регрессии а1

В случае линейного уравнения регрессии =a0 +a1 x величина коэффициента регрессии a1 показывает, на сколько в среднем (в абсолютном выражении) изменяется значение результативного признака Y при изменении фактора Х на единицу его измерения. Знак при a1 показывает направление этого изменения.

Вывод:

Коэффициент регрессии а1 =1,09 показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1 млн руб. значение результативного признака Выпуск продукции увеличивается в среднем на 1,09 млн. руб.

6.2. Экономическая интерпретация коэффициента эластичности.

С целью расширения возможностей экономического анализа явления используется коэффициент эластичности , которыйизмеряется в процентах и показывает, на сколько процентов изменяется в среднем результативный признак при изменении факторного признака на 1%.

Средние значения и приведены в таблице описательных статистик (ЛР-1, Лист 1, табл.3).

Расчет коэффициента эластичности:

Вывод:

Значение коэффициента эластичности Кэ =1,17 показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1% значение результативного признака Выпуск продукции увеличивается в среднем на 1,17 %.

6.3. Экономическая интерпретация остаточных величин εi

Каждый их остатков характеризует отклонение фактического значения yi от теоретического значения , рассчитанного по построенной регрессионной модели и определяющего, какого среднего значения следует ожидать, когда фактор Х принимает значение xi .

Анализируя остатки, можно сделать ряд практических выводов, касающихся выпуска продукции на рассматриваемых предприятиях отрасли.

Значения остатков i (таблица остатков из диапазона А98:С128) имеют как положительные, так и отрицательные отклонения от ожидаемого в среднем объема выпуска продукции (которые в итоге уравновешиваются, т.е.).

Экономический интерес представляют наибольшие расхождения между фактическим объемом выпускаемой продукции yi и ожидаемым усредненным объемом .

Вывод:

Согласно таблице остатков максимальное превышение ожидаемого среднего объема выпускаемой продукции имеют три предприятия - с номерами 7,14,30, а максимальные отрицательные отклонения - три предприятия с номерами 18, 19, 28. Именно эти шесть предприятий подлежат дальнейшему экономическому анализу для выяснения причин наибольших отклонений объема выпускаемой ими продукции от ожидаемого среднего объема и выявления резервов роста производства.

Задача 7 . Нахождение наиболее адекватного нелинейного уравнения регрессии с помощью средств инструмента Мастер диаграмм.

Уравнения регрессии и их графики построены для 3-х видов нелинейной зависимости между признаками и представлены на диаграмме 2.1 Рабочего файла.

Уравнения регрессии и соответствующие им индексы детерминации R2 приведены в табл.2.10 (при заполнении данной таблицы коэффициенты уравнений необходимо указывать не в компьютерном формате, а в общепринятой десятичной форме чисел).

Таблица 2.10

Регрессионные модели связи

Вид уравнения Уравнение регрессии

Индекс

детерминации R2

Полином 2-го порядка 5Е-0,5 х2 +0,670х+ 210,7 0,835
Полином 3-го порядка 7E-0,8x3 - 0,0009x2 + 5,0506x – 6265,1 0,8381
Степенная функция 0,2044x1,17 8 9 0,8371

Выбор наиболее адекватного уравнения регрессии определяется максимальным значением индекса детерминации R2: чем ближе значение R2 к единице, тем более точно регрессионная модель соответствует фактическим данным.

Вывод:

Максимальное значение индекса детерминации R2 =0,8381.Следовательно, наиболее адекватное исходным данным нелинейное уравнение регрессии имеет вид7E-0,8x3 - 0,0009x2 + 5,0506x – 6265,1

ПРИЛОЖЕНИЕ

Результативные таблицы и графики

Исходные данные
Номер предприятия Среднегодовая стоимость основных производственных фондов, млн.руб. Выпуск продукции, млн. руб.
1 3608,00 3450,50
2 4244,50 3785,50
3 4378,50 4221,00
4 4613,00 4690,00
5 3005,00 2345,00
6 4847,50 4020,00
7 4981,50 5427,00
8 3742,00 3685,00
9 4579,50 4321,50
10 5283,00 5393,50
12 5785,50 5695,00
13 4412,00 4489,00
14 4847,50 4891,00
15 5551,00 5929,50
16 6355,00 6365,00
17 4747,00 4288,00
18 5249,50 5092,00
19 4177,50 3182,50
20 5316,50 4355,00
21 5919,50 5862,50
22 4077,00 3316,50
23 3239,50 3115,50
24 5417,00 4991,50
25 4847,50 4355,00
26 4512,50 4120,50
27 3507,50 2680,00
28 4713,50 4187,50
29 5450,50 4589,50
31 5182,50 4355,00
32 3809,00 3886,00
Таблица 2.2
Зависимость выпуска продукции от среднегодовой стоимости основных фондов
Номер группы Группы предприятий по стоимости основеных фондов Число предприятий Выпуск продукции
Всего В среднем
на одно
предприятие
1 3005-3675 4 16147,00 4036,75
2 3675-4345 5 19798,50 3959,70
3 4345-5015 11 55543,00 5049,36
4 5015-5685 7 26766,50 3823,79
5 5685-6355 3 12830,50 4276,83
Итого 30 131085,50 4369,52
Таблица 2.3
Показатели внутригрупповой вариации
Номер группы Группы предприятий по стоимости основеных фондов Число предприятий Внутригрупповая дисперсия
1 3005-3675 4 216874,81
2 3675-4345 5 994044,16
3 4345-5015 11 780900,50
4 5015-5685 7 561903,70
5 5685-6355 3 85540,39
Итого 30
Таблица 2.4
Показатели дисперсии и эмпирического корреляционного отношения
Общая дисперсия Средняя из внутригрупповых дисперсия Межгрупповая дисперсия Эмпирическое корреляционное отношение
903163,1081 620585,7564 282577,3517 0,559352496
Выходные таблицы
ВЫВОД ИТОГОВ
Регрессионная статистика
Множественный R 0,91318826
R-квадрат 0,833912798
Нормированный R-квадрат 0,827981112
Стандартная ошибка 400,8969854
Наблюдения 30

Дисперсионный анализ
df SS MS F Значимость F
Регрессия 1 22594778,24 22594778,24 140,5861384 1,97601E-12
Остаток 28 4500115,002 160718,3929
Итого 29 27094893,24
Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95%
Y-пересечение -728,6655802 436,1611477 -1,670633856 0,10593656 -1622,101178
Переменная X 1 1,089355181 0,09187519 11,85690257 1,97601E-12 0,901157387
Верхние 95% Нижние 68,3% Верхние 68,3%
Y-пересечение 164,7700179 -1173,045872 -284,2852881
Переменная X 1 1,277552975 0,995748668 1,182961694
ВЫВОД ОСТАТКА
Наблюдение Предсказанное Y Остатки
1 3201,727913 248,7720873
2 3895,102485 -109,6024854
3 4041,07608 179,9239204
4 4296,52987 393,4701305
5 2544,846739 -199,8467386
6 4551,983659 -531,9836595
7 4697,957254 729,0427463
8 3347,701507 337,2984931
9 4260,036471 61,46352902
10 5026,397841 367,1021592
11 5573,798819 121,2011808
12 4077,569478 411,4305218
13 4551,983659 339,0163405
14 5318,345029 611,1549707
15 6194,186595 170,8134052
16 4442,503464 -154,5034638
17 4989,904442 102,0955578
18 3822,115688 -639,6156882
19 5062,891239 -707,8912393
20 5719,772413 142,7275865
21 3712,635493 -396,1354926
22 2800,300529 315,1994715
23 5172,371435 -180,871435
24 4551,983659 -196,9836595
25 4187,049674 -66,54967386
26 3092,247717 -412,247717
27 4406,010065 -218,5100652
28 5208,864834 -619,3648336
29 4916,917645 -561,9176451
30 3420,688304 465,3116959

Рис. 1

ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ

ДОБАВИТЬ КОММЕНТАРИЙ [можно без регистрации]

Ваше имя:

Комментарий

Все материалы в разделе "Маркетинг"