регистрация / вход

Анализ статистической совокупности

Задача статистического исследования – освоить методику анализа структуры статистической совокупности с использованием компьютерных средств экономико-статистических расчетов, научится использовать аналитические группировки в выявлении взаимосвязей между явлениями.

Задача статистического исследования – освоить методику анализа структуры статистической совокупности с использованием компьютерных средств экономико-статистических расчетов, научится использовать аналитические группировки в выявлении взаимосвязей между явлениями.

В проводимом статистическом исследовании обследованные предприятия выступают как единицы выборочной совокупности, а показатели Среднегодовая стоимость основных производственных фондов и Выпуск продукции – как изучаемые признаки единиц.

Таблица П1

Исходные данные

Порядковый номер единицы наблюдения Среднегодовая стоимость основных средств, млн руб. Выручка от продаж продукции, млн руб.
1 94 110
2 107 101
3 134 120
4 158 84
5 163 80
6 167 114
7 173 161
8 173 90
9 177 178
10 179 107
11 200 125
12 201 108
13 205 133
14 237 180
15 212 201
16 213 161
17 214 151
18 216 169
19 218 149
20 230 180
21 234 148
22 237 162
23 241 166
24 169 121
25 45 224
26 276 171
27 290 191
28 298 220
29 167 114
30 205 133
31 330 53
32 260 224

РЕЗУЛЬТАТИВНЫЕ ТАБЛИЦЫ И ГРАФИКИ

Диаграмма 1

Аномальные значения признаков на диаграмме рассеяния

Таблица 2

Аномальные единицы наблюдения

Номер предприятия Среднегодовая стоимость
основных производственных
фондов, млн руб.
Выпуск продукции,
млн руб.
25 45 224
31 330 53

Таблица 3

Описательные статистики

Среднегодовая стоимость основных средств, млн руб. Выручка от продаж продукции, млн руб.
Столбец 1 Столбец 2
Среднее 205,3103448 Среднее 146,2758621
Стандартная ошибка 8,273511571 Стандартная ошибка 7,251277542
Медиана 205 Медиана 149
Мода 167 Мода 114
Стандартное отклонение 44,55422334 Стандартное отклонение 39,04932463
Дисперсия выборки 1985,078818 Дисперсия выборки 1524,849754
Эксцесс 0,027595777 Эксцесс -0,686034479
Асимметричность 0,134309755 Асимметричность 0,15523623
Интервал 191 Интервал 144
Минимум 107 Минимум 80
Максимум 298 Максимум 224
Сумма 5954 Сумма 4242
Счет 29 Счет 29
Уровень надежности(95,4%) 17,2763084 Уровень надежности(95,4%) 15,14173347

Таблица 4,а

Предельные ошибки выборки

Среднегодовая стоимость основных средств, млн руб. Выручка от продаж продукции, млн руб.
Столбец 2 Столбец 2
Уровень надежности(68,3%) 8,429419969 Уровень надежности(68,3%) 7,387922672

Таблица 4,б

Предельные ошибки выборки

Среднегодовая стоимость основных средств, млн руб. Выручка от продаж продукции, млн руб.
Столбец 1 Столбец 2
Уровень надежности(99,7%) 26,88832532 Уровень надежности(99,7%) 23,56613728

Таблица 5

Выборочные показатели вариации и асимметрии

Среднегодовая стоимость основных средств, млн руб. Выручка от продаж продукции, млн руб.
Стандартное отклонение 47,4549611 Стандартное отклонение 38,28309752
Дисперсия 2251,973333 Дисперсия 1465,595556
Среднее линейное отклонение 37,36 Среднее линейное отклонение 32,72888889
Коэффициент вариации, % 23,1137701 Коэффициент вариации, % 26,17184885
Коэффициент асимметрии 0,807299046 Коэффициент асимметрии 0,843083872

Таблица 6

Выходная таблица инструмента ГИСТОГРАММА

Карман Частота
1
134,8 2
175,6 7
216,4 10
257,2 6
298 4

Таблица 7

Интервальный ряд распределения предприятий по стоимости основных производственных фондов

Группы предприятий по среднесписочной численности работников, чел. Число предприятий в группе Накопительная частотность группы
94 - 134,8 3 10,00%
134,8 - 175,6 7 33,33%
175,6 - 216,4 10 66,67%
216,4 - 257,2 6 86,67%
257,2 - 298 4 100,00%
Итого 0 100,00%

Диаграмма 2

Анализ выборочной совокупности.

Задача 1.

На построенной диаграмме рассеяния (см. Диаграмма 1) визуально видно наличие аномальных точек. Это предприятие №25 (среднегодовая стоимость основных производственных фондов – 45 млн руб.; выпуск продукции – 224 млн руб.) и предприятие №31 (среднегодовая стоимость основных производственных фондов – 330 млн руб.; выпуск продукции – 53 млн руб.). Исключим аномальные единицы наблюдения из первичных данных. Внесем аномальные единицы наблюдения в таблицу 2.

Задача 2.

На основе имеющихся данных составим таблицу

Таблица 8

Описательные статистики выборочной совокупности

Среднегодовая стоимость
основных производственных
фондов, млн руб.
Выпуск продукции,
млн руб.
Столбец1 Столбец2
Среднее, Ч̃ 199,6333333 Среднее, Ч̃ 143,1666667
Медиана, Me 205 Медиана, Me 148,5
Мода,Mo 167 Мода,Mo 114
Интервал, R 204 Интервал, R 140
Стандартное отклонение, σn 46,04815113 Стандартное отклонение, σn 34,06179026
Дисперсия, σn 2 2120,432222 Дисперсия, σn 2 1160,205556
Среднее линейное отклонение, d 35,44 Среднее линейное отклонение, d 28,42222222
Коэффициент вариации, %, Vσ 23,0663639 Коэффициент вариации, %, Vσ 23,79170449
Коэффициент асимметрии, AsП 0,708678471 Коэффициент асимметрии, AsП 0,856286955

В таблицу внесены обобщающие статистические показатели совокупности, исчисляемые на основе анализа вариационных рядов распределения

Задача 3.

3,а. Если величина Vσ удовлетворяет условию0%<Vσ ≤40%, то степень колеблемости незначительна. В данной совокупности выполняется это условие.

0%<23,0663639≤40%

0%<23,79170449≤40%

3,б. Совокупность является количественно однородной по тому или иному признаку, когда выполняется неравенство Vσ ≤33%. Коэффициенты вариации по каждому признаку удовлетворяют данному условию. Следовательно, совокупности являются количественно однородными.

3,в. Если , то значения признака неустойчивы. В них имеются «аномальные» выбросы.

Следовательно, несмотря на визуальное обнаружение и исключение нетипичных единиц наблюдения при выполнении задания 1, некоторые аномалии в первичных данных продолжают сохраняться.

Аномалии следует выявить и удалить из выборки.

3,г.

Обобщим данные и составим таблицу

Таблица 9

Распределение значений признака по диапазонам рассеяния признака относительно

Границы диапазонов Количество значений xi , находящихся в диапазоне
Первый признак Второй признак Первый признак Второй признак
153,5851822≤xi ≤ 245,6814844 109,1048764≤xi ≤177,228457 23/76,7% 21/65,6%
107,537031≤xi ≤ 291,7296356 75,04308618≤xi ≤211,2902472 28/87,5% 29/90,6%
61,48887991≤xi ≤ 337,7777867 40,98129592≤xi ≤245,3520375 31/96,9% 32/100%

Согласно вероятностной теореме П.Л. Чебышева, следует ожидать, что независимо от формы распределения 75% значений признака будут находиться в диапазоне (), а 89% значений – в диапазоне ()

В нормально распределенных и близких к ним рядах вероятные оценки диапазонов рассеяния значений признака таковы:

- 68,3% войдет в диапазон ()

- 95,4% попадет в диапазон () (1)

- 99,7% появится в диапазоне ()

Соотношение (1) известно как правило «трех сигм».

В нашем случае значения каждого из признаков отлично от правила «трех сигм». Значения второго признака ближе к правилу.

Задача 4.

4,а. Размах вариации R= Х max min . R для первого признака – 204 млн руб., для второго – 140 млн руб.. Размах вариации устанавливает предельное значение амплитуды колебаний признака.

Среднее линейное отклонение по первому признаку равно 35,44, по второму - 28,42222222. В условиях симметричного и нормального, а также близких к ним распределениям между показателями σ и d имеет место равенство: d ≈ 0,8 σ.

Первый признак: d ≈ 0,8*46,04815113 ≈ 36,838520904.

Второй признак: d ≈ 0,8*34,06179026 ≈ 27,249432208

Рассчитанные по формуле значения приблизительно равны значениям, рассчитанным с помощью программы MSExcel.

Дисперсия σ n 2 оценивает средний квадрат отклонений (). Величина σ очень чутко реагирует на вариацию признака (за счет возведения отклонений в квадрат) и органически вписывается в аппарат математической статистики (дисперсионный, корреляционный анализ и др.). Дисперсия первого признака (2120,432222) более, чем в 1,5 раза превосходит значение дисперсии второго признака (1160,205556).

Среднее квадратическое отклонение σ показывает, насколько в среднем отклоняются индивидуальные значения признака хi от их средней величины . Так, индивидуальные значения первого признака отличаются от на 46,04815113 млн руб., а второго – на 34,06179026 млн руб..

4,б. Совокупность является количественно однородной по тому или иному признаку, когда выполняется неравенство Vσ≤33%. Коэффициенты вариации по каждому признаку удовлетворяют данному условию. Следовательно, совокупности являются количественно однородными.

4,в. Для оценки надежности (типичности) средней величины х можно воспользоваться значением показателя вариации Vσ . Если его значение невелико, т.е. <40% (как в нашем случае), то индивидуальные значения признака хi мало отличаются друг от друга, единицы наблюдения количественно однородны и, следовательно, средняя арифметическая величина является надежной характеристикой данной совокупности.

4,г. Если As<0, то асимметрия левосторонняя, если As>0, то асимметрия правосторонняя. И для первого (0,708678471), и для второго (0,856286955) признака асимметрия левосторонняя.

│As│>0,5. Следовательно, асимметрия существенная.

Задача 5.

Интервальный вариационный ряд распределения единиц совокупности по признаку представлен в таблице 7. Гистограмма и кумулята интервального ряда распределения предприятий изображены на Диаграмме 2.

Для полученного интервального ряда значение моды рассчитывается по формуле:

млн руб.

Значение моды в таблице 3 – Мо=167 млн руб..

Для несгруппированных данных мода - это значение признака с наибольшей частотой появления. В интервальном ряду вычисление моды весьма условно. Поэтому между ними могут быть различия.

Анализ генеральной совокупности.

Задача 1.

На основе имеющихся данных составим таблицу

Таблица 10

Описательные статистики генеральной совокупности

Среднегодовая стоимость
основных производственных
фондов, млн руб.
Выпуск продукции,
млн руб.
Столбец1 Столбец2
Стандартное отклонение, σN 46,83535603 Стандартное отклонение, σN 34,64408526
Дисперсия выборки, σN 2 2193,550575 Дисперсия выборки, σN 2 1200,212644
Эксцесс, Ek 0,438466983 Эксцесс, Ek -0,36007995
Асимметричность, As -0,03462322 Асимметричность, As 0,085504193

В нашем случае обе дисперсии совпадают.

Rn =204 млн руб.

RN =6σN

RN =281 млн руб.

Значение размаха вариации различно, поскольку из генеральной совокупности были удалены аномальные значения признаков.

Задача 2.

2, a . Средняя ошибка выборки (µЧ̃ ) первого признака - 8,550926996 млн руб., второго - 6,325115661млн руб..

2,б. Предельная ошибка выборки Δ Ч̃ определяет границы, в пределах которых лежит генеральная средняя . Эти границы задают так называемый доверительный интервал генеральной средней – случайную область значений, которая с вероятностью Р, близкой к 1, гарантированно содержит значение генеральной средней. Эту вероятность называют доверительной вероятностью или уровнем надежности. Наиболее часто используются уровни надежности Р=0,954; Р=0,997; Р=0,683.

В математической статистике доказано, что: Δ Ч̃ = t * µЧ̃ .

Составим таблицу

Таблица 8

Предельные ошибки выборки и ожидаемые границы для генеральных средних

Доверительная вероятность Коэффициент доверия t Предельные ошибки выборки Ожидаемые границы для средних
для первого признака для второго признака для первого признака для второго признака
0,683 1

8,70660336

6,440269376

190,92672994≤≤208,33993666 136,726397324≤≤149,606936076
0,954 2

17,82706705

13,18667099

181,80626625≤≤217,46040035 129,97999571≤≤156,35333769
0,997 3

27,69995902

20,48964337

171,93337428≤≤227,33329232 122,67702333≤≤163,65631007

Таким образом, предельная ошибка выборки позволяет определить предельные значения показателей генеральной совокупности и их доверительные интервалы.

Задача 3.

Если As<0, то асимметрия левосторонняя, если As>0, то асимметрия правосторонняя. Для первого признака асимметрия левосторонняя (-0,03462322), для второго – правосторонняя (0,085504193).

│As│≤0,25. Следовательно, асимметрия незначительная.

Для первого признака Ek>0. Следовательно, вершина кривой распределения располагается выше вершины нормальной кривой, а форма кривой является более островершинной, чем нормальная. Это говорит о скоплении значений признака в центральной зоне ряда распределения, т.е. о преимущественном появлении в данных значений, близких к средним.

Для второго признака Ek<0. Следовательно, вершина кривой распределения лежит ниже вершины нормальной кривой, а форма кривой более пологая по сравнению с нормальной. Это означает, что значения признака не концентрируются в центральной части ряда, а достаточно равномерно рассеяны по всему диапазону от Хmax до Хmin .

│Ek│ не значителен. Следовательно, кривая распределения незначительно отличается от нормальной.

ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ

ДОБАВИТЬ КОММЕНТАРИЙ [можно без регистрации]

Ваше имя:

Комментарий