Смекни!
smekni.com

Инфузионно-трансфузионная терапия (стр. 1 из 2)

Министерство образования Российской Федерации

Пензенский Государственный Университет

Медицинский Институт

Кафедра Терапии

Зав. кафедрой д.м.н., ________________

Реферат

на тему:

Инфузионно-трансфузионная терапия

Выполнила: студентка V курса ________

Проверил: к.м.н., доцент _____________

Пенза

2008

План

Введение

1. Волемия

2. Вязкость крови

3. Транспорт веществ

4. Правила использования ИТ

Литература


Введение

Инфузионно-трансфузионная терапия (ИТТ) - это метод лечения, заключающийся в парентеральном (чаще внутривенном) введении различных растворов с целью коррекции нарушений гомеостаза.

Кровь, ее компоненты, препараты и кровезамещающие жидкости используют с лечебной целью по строгим медицинским показаниям. Инфузионно-трансфузионная терапия проводится для устранения гиповолемии, водно-электролитного и кислотно-основного дисбалансов, нарушений реологических и коагуляционных свойств крови, расстройств микроциркуляции и обмена веществ, для обеспечения эффективного транспорта кислорода, дезинтоксикации.

Инфузионная терапия оказывает многогранное действие на организм. Характер этого действия зависит от вводимого препарата, его объема, скорости и путей введения, а также от функционального состояния основных систем жизнеобеспечения. Первой реагирует на инфузии система кровообращения, так как переливаемые препараты оказывают непосредственное воздействие на сосуды, кровь и деятельность сердца. При этом проявляются волемический (объемный), реологический, гемодилюционный эффекты.

1. Волемия

Волемия - величина непостоянная. Она изменяется в зависимости от депонирования или экспонирования крови, транскапиллярного обмена и других факторов. В организме всегда имеется определенное количество крови, которое в конкретную единицу времени в общей циркуляции не участвует. Она содержится в так называемом депо, которое представлено нефункционирующими капиллярами, причем преимущественно в скелетной мускулатуре. Регуляция ОЦК путем депонирования или экспонирования может осуществляться довольно быстро с помощью механизма вазомоции, т. е. вазомоторной активности сосудов, регулирующих попеременное продвижение тока крови в капиллярных полях автономно под влиянием местного метаболизма.

Патологическое депонирование является реакцией на стрессовое состояние - острую кровопотерю, травму, интоксикацию и т. д. Для него характерны не только изменения микроциркуляции (застойное кровообращение в капиллярном русле), но и нарушение реологических свойств крови за счет ее сгущения вплоть до агрегации эритроцитов. Патологическое депонирование может быть необратимым.

Регуляция объема циркулирующей крови происходит и на транскапиллярном уровне, где осуществляется обмен между плазмой и интерстициальной жидкостью. В этом обмене важную роль играют белки крови, электролиты и вода, определяющие коллоидно-осмотическое давление по обе стороны диализирующей мембраны капиллярной стенки. Ток жидкости через нее в обычных условиях направлен в сторону большего осмотического давления, поэтому снижение концентрации белков в плазме крови и альбумино-глобулинового коэффициента (А/Г) способствует уменьшению ОЦК за счет снижения объема циркулирующей плазмы (ОЦП).

Главная цель при терапии гиповолемии – увеличение объема циркулирующей крови (ОЦК). Это может быть достигнуто комплексной инфузионно-трансфузионной терапией.

Волемический эффект складывается из способности связывать воду и длительности пребывания коллоидных частиц в сосудистом русле, а также распределения введенной жидкости между внутри- и внесосудистым секторами и степенью депонирования. Сила связывания воды прямо пропорциональна средней молекулярной массе кровезаменителя.

Волемический эффект создается увеличением ОЦК как в связи с непосредственной циркуляцией в крови переливаемого раствора, так и за счет одновременного поступления жидкости в сосуды из интерстициального пространства. Раствор, даже обладающий низким осмотическим давлением, но введенный внутривенно с большой объемной скоростью (50-100 мл/мин и более), какое-то время полностью циркулирует в сосудистом русле и вызывает возрастание ОЦК на величину, практически равную объему произведенной инфузии. Продолжительность прямого волемического действия зависит от времени циркуляции препарата в крови.

Осмотически активные растворы не только обусловливают непосредственный прирост ОЦК за счет своего объема, но и способствуют дополнительному притоку в сосуды интерстициальной жидкости (за счет увеличения коллоидно-осмотического градиента «сосуды – ткани»). Волемический эффект коллоидных растворов характеризуется волемическим коэффициентом (величина прироста объема внутрисосудистой жидкости в мл на каждый миллилитр кровезаменителя, введенный в сосудистое русло реципиента). У большинства противошоковых кровезаменителей он больше «1», что создает волемический "эффект увеличения" вводимого объема.

Кровоток в системе микроциркуляции имеет определенную структуризацию, которая во многом определяется скоростью движения крови. В центре его, создавая осевую линию, располагаются эритроциты, которые вместе с плазмой движутся один за другим с определенным интервалом. Этот поток эритроцитов создает ось, вокруг которой располагаются другие клетки — лейкоциты и тромбоциты. Эритроцитарный ток имеет наибольшую скорость продвижения. Тромбоциты и лейкоциты, расположенные вдоль стенки сосуда, движутся медленнее. Расположение составных частей крови довольно устойчивое и при нормальной скорости кровотока не меняется.

2. Вязкость крови

Вязкость крови - величина непостоянная. Она зависит от ряда физико-химических показателей, диаметра сосудов и варьирует в широких пределах. По мере проникновения в более узкие капилляры текучесть крови повышается. Это особенно выражено в микрососудах, имеющих в поперечнике 7-:8 мкм. Однако в еще более мелких капиллярах вязкость возрастает.

Кровь находится в постоянном движении. По мере увеличения скорости кровотока вязкость крови снижается, а при замедлении его - увеличивается. Со своей стороны вязкость также влияет на скорость кровотока, так как каждый из движущихся слоев крови находится под воздействием силы, определяющей «сдвигающее напряжение» одного слоя по отношению к другому. Эту силу создает систолическое артериальное давление. На вязкость крови определенное влияние оказывает концентрация содержащихся в ней ингредиентов - эритроцитов, ядерных клеток, белков жирных кислот и т. д.

Эритроциты имеют внутреннюю вязкость, которая определяется вязкостью содержащегося в них гемоглобина. Внутренняя вязкость эритроцита может меняться в больших пределах, от чего зависит его способность проникать в более узкие капилляры и принимать вытянутую форму (деформируемость, тикситропия). В основном эти свойства эритроцита обусловливаются содержанием в нем фосфорных фракций, в частности АТФ. Гемолиз эритроцитов с выходом гемоглобина в плазму повышает вязкость последней в 3 раза.

Для характеристики вязкости крови исключительно важное значение имеют белки, так как она напрямую зависит от их концентрации в крови (особенно от глобулинов, а также фибриногена). Реологически активную роль играет альбумин.

Замедление скорости кровотока часто имеет место в тех случаях, когда падает артериальное давление. Агрегация эритроцитов наблюдается, как правило, при всех видах шока и интоксикации, а также при массивных гемотрансфузиях. Генерализованная агрегация эритроцитов проявляется феноменом «сладжа». Агрегаты эритроцитов подвергаются резорбции в ретикуло-эндотелиальной системе.

Геморрагия, гемодилюция и, наоборот, плазмопотеря и дегидратация существенно отражаются на реологических свойствах крови.

Реологический эффект инфузий определяется прежде всего разжижением крови и уменьшением ее вязкости. Это происходит не столько при вливаниях больших количеств растворов, особенно низкомолекулярных, сколько при нормализации или ускорении периферического кровотока в связи с использованием реологически активных кровезаменителей (коллоидные среды, препараты гидроксиэтилкрахмала).

Гемодилюция (разведение крови) изменяет условия периферического кровообращения и эффективного транспорта кислорода и тем самым способствует стабилизации обменных процессов, уменьшению послеоперационных тромбоэмболических и легочных осложнений. В основе механизма развития и поддержания гемодилюции лежит изменение соотношения числа форменных элементов крови и объема плазмы. Оптимальным считается такой уровень гемодилюции, когда разведение крови достигает 30% от нормальных величин. Примечательно, что при этом эффективный транспорт кислорода не только не уменьшается, а даже возрастает.

Гиперволемическая управляемая гемодилюция используется во время операции, когда производят снижение гематокрита быстрой инфузией кровезаменителей, а затем удаляют их с помощью форсированного диуреза.

3. Транспорт веществ

Транспорт кислорода - одна из важнейших функций системы кровообращения. Тканевая гипоксия чаще является следствием нарушения кровотока, а не уменьшения кислородной емкости в связи с потерей эритроцитарного объема. Доказано существенное уменьшение (в 2-3 раза) транспорта кислорода при сгущении крови. Он увеличивается во всех случаях, когда инфузионная терапия способствует улучшению периферического кровообращения.

Система дыхания также отчетливо реагирует на инфузионную терапию. Известно, что легкие обеспечивают задержку и метаболизм попадающих в кровоток микросгустков, механических микропримесей и т.п. Поэтому продолжительные инфузии могут привести к повреждению легочных капилляров, нарушению вентиляционно-перфузионных отношений. Возможен выход жидкости в интерстициальное пространство с развитием отека легких. Все это клинически проявляется острой дыхательной недостаточностью.