Смекни!
smekni.com

Мейотическое деление, как один из способов размножения клеток (стр. 1 из 2)

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ

РОССИЙСКОЙ ФЕДЕРАЦИИ

Дальневосточный государственный

медицинский университет

Кафедра: гистологии и эмбриологии человека

Факультет: Высшего Сестринского Образования

Заочное обучение

Контрольная работа №16

тема: Мейотическое деление, как один из способов размножения клеток

выполнила: Кобыльцова

Ольга Владимировна

Группа № 102

Курс 1

Адрес: Хабаровск,

ул. Воровского

д.№22 кв. 72.

ХАБАРОВСК 2007 г.


Задание №1. Мейотическое деление как один из способов размножения клеток.

План :

I. Введение

II. Первое деление мейоза.

1. Профаза

2.Метафаза

3.Анафаза

III. Второе деление мейоза.

IV. Заключение.

Задание №2. Схема формирования нервной трубки.

Задание № 3 .

1.Какая эпителиальная ткань имеет наибольшую скорость обновления?

2.Где находится этот эпителий?

3.Какие типы клеток в нем имеются?

Список литературы.

Задание №1. Мейотическое деление как один из способов размножения клеток.

I. Введение

Термином «мейоз» обозначают два следующих друг за другом деления, в результате которых из диплоидных клеток образуются гаплоидные половые клетки – гаметы. Если бы оплодотворение происходило диплоидными гаметами, то плоидность потомков в каждом следующем поколении должна была бы возрастать в геометрической прогрессии. В то же время благодаря мейозу зрелые гаметы всегда гаплоидны, что позволяет сохранять диплоидность соматических клеток вида. Возможность существования подобного мейозу деления при созревании гамет животных и растений была предсказана А. Вейсманом еще в 1887 г. Мейотические деления не эквивалентны митозу. Обоим мейотическим делениям предшествует только одна фаза синтеза ДНК. Продолжительность ее, как и профазы I деления мейоза, во много раз превосходит соответствующие показатели митотического цикла любых соматических клеток данного вида.

II. Первое деление мейоза.

1. Профаза

Главные события мейоза развертываются в профазе I деления. Она состоит из пяти стадий.

Первой стадии – лептотене, следующей непосредственно за окончанием предмейотического синтеза ДНК, выявляются тонкие длинные хромосомы. Они отличаются в профазе митоза двумя особенностями: во-первых, в них не обнаруживается двойственность, т.е. не видно сестринских хроматид, во-вторых, лептотенные хромосомы имеют выраженное хромомерное строение. Хромомеры – узелки. Участки плотной компактизации ДНК, размеры и расположение которых строго видоспецифично. Хромомеры встречаются как в мейотических, так и в митотических хромосомах, однако в последних без специфической обработки они не видны.

Во второй стадии профазы I деления – зиготене – происходит тесное сближение по всей длине (конъюгация) гомологичных хромосом. Гомологичными называются хромосомы, имеющие одинаковую форму и размер, но одна из них получена от матери, другая – от отца. Гаплоидный набор равен числу пар гомологов. Конъюгация гомологичных хромосом происходит по принципу действия застежки-молнии. По окончании конъюгации число хромосом как бы уменьшается вдвое. Каждый элемент, состоящий из двух гомологов, называют бивалентом или тетрадой. Последний термин подчеркивает, что бивалент содержит четыре хроматиды, образующиеся в ходе предмейотического синтеза ДНК.

Третья стадия профазы I деления – пахитена – у большинства видов самая длительная. Под световым микроскопом видны конъюгировавшие хромосомы с более или менее четко выраженным хромомерным строением. Приблизительно в середине пахитены между хроматидами гомологичных хромосом появляется продольная щель, которая ясно показывает, что бивалент – это, по существу, четверная хромосомная структура. В пахитене происходит важное генетическое событие – кроссинговер, или перекрест хроматид гомологичных хромосом. В результате этого в каждом гомологе смешиваются отцовский и материнский наследственный материал.

Результаты кроссинговера становятся заметными лишь в четвертой и пятой стадиях профазы I деления – диплотене и диакинезе. Диплотена начинается с момента расхождения гомологичных хромосом. В это время в точках кроссинговера видны перекрещенные хроматиды. Область перекреста хроматид называют хиазмой. Число хиазм в целом соответствует количеству актов кроссинговера в биваленте и пропорционально длине гомологичных хромосом, его составляющих. Для диплотены и диакинеза характерно прогрессирующее укорочение хромосом в результате компактизации; поэтому хиазмы постепенно терминализуются, т.е. приближаются к концам бивалента и спадают с него. Таким образом, по мере приближения к метафазе первого деления число хиазм уменьшается.

2.Метафаза

В метафазеIделения мейоза район центромеры каждой хромосомы соединен (в отличие от метафазы митоза) нитью веретена только с одним полюсом клетки, причем центромеры разошедшихся гомологов всегда связаны с противоположными полюсами.

3.Анафаза

Анафазе Iделения мейоза не предшествует расщепление центромеры, как при митозе, и поэтому к полюсам отходят не хроматиды, а целые хромосомы, состоящие из двух хроматид. Однако, поскольку гомологичные хромосомы расходятся к разным полюсам, первое мейотическое деление приводит к редукции числа хромосом. Другими словами, по числу хромосом продукты I деления мейоза становятся гаплоидными. Однако в связи с тем, что хромосомы в них сохраняют двойственность, т.е. содержат две хроматиды, количество ДНК уменьшается лишь до 2с.

III. Второе деление мейоза

Второе деление мейоза, следующее после краткого промежутка – интеркинеза, приводит в соответствие число хромосом и содержание ДНК. Формально оно напоминает митоз. В начале анафазы происходит разделение центромеры, сестринские хроматиды становятся дочерними хромосомами и расходятся к полюсам. Таким образом, каждая из четырех клеток, образовавшихся вследствие двух мейотических делений одной клетки, прошедшей предмейотическую S-фазу, будет содержать п хромосом и с ДНК.

IV.Заключение

Главное отличие мейоза от митоза – конъюгация гомологичных хромосом с последующим расхождением их в разные гаметы. Точность расхождения обусловлена точностью конъюгации, а последняя – идентичностью молекулярной структуры ДНК гомологов.

В заключение отметим, что цитологами доказано независимое расхождение негомологичных хромосом в профазе I деления мейоза. Это означает, что любая отцовская хромосома может попасть в гамету с любой, в крайнем варианте – со всеми материнскими негомологичными хромосомами. Однако если речь идет о дочерних хромосомах (во II делении мейоза), образовавшихся из перекрещенных, т.е. претерпевших кроссинговер, или кроссоверных хроматид, то их, строго говоря, нельзя рассматривать ни как чисто отцовские, ни как чисто материнские.


Задание №2. Схема формирования нервной трубки.

Нервная система человеческого эмбриона, формирующаяся из дорсального утолщения эктодермы, представлена двумя структурами: первичной полоской и нотохордом. Первичная полоска является утолщением эктодермы эмбриона, представляющего к концу третьей недели овальный диск около 1,5 см в длину. Рострально ее находится другое утолщение эктодермы - первичный (гензеновский) узелок. Узелок, втягиваясь, образует бластопор. В ростральном направлении между эктодермой и энтодермой из первичного узелка мигрирует тяж клеток, образующий нотохорд. При дальнейшем втягивании бластопора, переходящего в нотохорд, образуется нотохордальный канал. Эктодерма, покрывающая нотохорд, утолщается, формируя нервную пластинку.

В дальнейшем нервная пластинка прогибается с образованием сначала нервной бороздки, а в конце - длинной полой трубки, лежащей непосредственно под поверхностью эктодермы, от которой она отделяется. Первой замыкается та часть нервной трубки, которая образует задний мозг. При замыкании бороздки в каудальном направлении формируется часть нервной трубки, которая соединяется со спинным мозгом. Замыкание нервной бороздки в ростральном направлении происходит одновременно с формированием сегментов спинного мозга. Оно сначала ведет к образованию среднего, а затем переднего мозга. Последним замыкается небольшое отверстие на мозговом конце, называемое передним нейропором. По мере замыкания нервной трубки эктодермальные клетки боковых краев нервной бороздки выталкиваются в сторону, образуя продолговатый тяж клеток по обеим сторонам трубки - нервный гребень. Процесс формирования нервной трубки называется нейруляцией.

По завершении нейруляции клетки нервного гребня мигрируют наружу и дают начало спинальным ганглиям, периферическим ганглионарным нейронам симпатической нервной системы, шванновским клеткам, клеткам спинальных ганглиев, а также клеткам, образующим внутренние листки оболочек мозга. Сформировавшись, длинная полая нервная трубка подвергается дальнейшим изменениям. На ранней стадии она подразделяется на длинную каудальную трубку, образующую спинной мозг, и более широкие ростральные сегменты, которые превращаются в головной мозг.

Рис. 1. Схема образования нервной трубки и нервного гребня :

I - образование нервной бороздки, ее погружение, II - образование нервной трубки, нервного гребня, Ш - миграция клеток нервного гребня;

1 - нервная бороздка, 2 - нервный гребень, 3 - нервная трубка, 4 – эктодерма

Задание № 3 .Какая эпителиальная ткань имеет наибольшую скорость обновления ? Где находится этот эпителий? Какие типы клеток в нем имеются?

Однослойные (однорядные) эпителии

По форме клеток могут быть плоскими, кубическими, призматическими.