Смекни!
smekni.com

Потенциометрический и амперометрический иммуноанализ (стр. 1 из 3)

Потенциометрический и амперометрический иммуноанализ

Введение

Меченные ферментом антитела стали получать с середины шестидесятых годов. Сначала их использовали для визуального обнаружения антигенов в гистологии и линий преципитации в иммуноэлектрофорезе. Количественное определение иммунореагентов с помощью ферментной метки стало возможным после разработки способов иммобилизации антигенов на твердой подложке. Этим работам предшествовало внедрение в иммуноанализ в качестве меток радиоактивных изотопов, и в то, время ферменты казались менее перспективными метками. Радиоиммуноанализ широко применялся в клинических анализах благодаря хорошей чувствительности и достаточной селективности. В настоящее время все чаще стали обсуждать недостатки РИА, связанные, например, с коротким периодом полураспада йода-125 и проблемами захоронения радиоактивных отходов. Однако простота измерения радиоактивной метки при удовлетворительных чувствительности и точности первоначально обеспечивала методу РИА некоторые преимущества перед методом иммуноферментного анализа. Примерно в то же время впервые было описано применение электродов для определения биологических молекул. Первые электроды создавались исключительно на основе ферментов в силу их высокой специфичности к субстратам. Были разработаны ферментные электроды для определения многих компонентов биологических жидкостей, например глюкозы и мочевины. К сожалению, ферменты не обязательно абсолютно специфичны по отношению только к одному субстрату, и поэтому всегда есть вероятность мешающего влияния со стороны других биологических компонентов проб. Несмотря на недостаточную специфичность, ферментные электроды, как и другие электрохимические детекторы, имеют и ряд положительных качеств, в первую очередь относительно низкую стоимость и простоту в эксплуатации. Кроме того, для них характерен низкий предел обнаружения, в ряде случаев приближающийся к пределу обнаружения с помощью РИА.

Электрохимические методы иммуноанализа создавались с целью объединения чувствительности электрохимического детектора и специфичности, присущей реакции взаимодействия антиген-антитело. Существуют два типа электрохимических сенсоров:

амперометрические, в которых потенциал электрода инициирует реакцию й измеряется сила тока;

потенциометрические, в которых на границе раздела сенсор-раствор устанавливается локальное равновесие и измеряется мембранный или электродный потенциал.

В потенциометрическом иммуноанализе доминируют три направления: прямое определение степени связывания белков;

использование ионо- и газоселективных электродов для определения продуктов иммунохимической реакции с ферментной меткой;

включение ионофоров в мембраны ионоселективных электродов.

В большинстве ранних публикаций по протенциометрическим ферментным детекторам описаны связанные с мембраной антигены и их применение для определения специфических антител. Присоединением ионофора к антигену можно достичь усиления выходного сигнала. В более поздних публикациях описаны сенсоры и для определения антигенов, на мембране которых в свою очередь иммобилизованы антитела.

Амперометрические иммуноанализы подразделяют на два основных типа:

1) анализы с использованием ферментных меток, которые катализируют образование электрохимически активного продукта;

2) анализы, в которых сама метка электроактивна или придает электроактивность другим веществам, например путем присоединения нитрогрупп.

Иногда выделяют также вольтамперрметрический иммуноанализ с металлоценовыми метками. Амперометрию можно применять как в гомогенном, так и в гетерогенном иммуноанализе. В гомогенных системах нет необходимости в операции отделения свободного антигена от связанного; основой гомогенного иммуноанализа является изменение электрохимической активности или какого-либо другого свойства метки при связывании меченого антигена с антителами, приводящее к изменению интенсивности сигнала. Соответствующие методики очень просты, однако им свойственны и некоторые недостатки. Так, на реакцию связывания может влиять матрикс, что приводит к повышению фонового сигнала. Гетерогенный иммуноанализ, включающий операцию разделения, обладает большей чувствительностью; в этом случае предел обнаружения может приближаться к пределу обнаружения РИА. Операция разделения уменьшает ошибки, обусловленные влиянием компонентов пробы на электрохимическую реакцию, и предохраняет электрод от загрязнения. Опубликован обзор, посвященный стратегии электрохимического иммуноанализа.

Потенциометрический иммуноанализ

Прямое определение связывания антигенов или антител. Прямое определение степени связывания антигенов представляется вполне целесообразным, поскольку при этом отпадает необходимость во введении метки. В водном растворе белки являются полиэлектролитами и поэтому имеют определенный результирующий электрический заряд. Полярность и величина этого заряда зависят от изоэлектрической точки белка и от ионного состава раствора. Связывание одного белка с другим приведет к образованию комплекса, результирующий заряд которого будет отличаться от зарядов исходных белков. Этот принцип впервые был применен Джанатой на примере конканавалина А, иммобилизованного на покрытой поливинил хлоридом проволоке. Такой электрод позволял определять в растворе дрожжевого маннана в диапазоне концентраций 0,1-1,0 мг/мл, однако аналогичный эффект в системе овальбумин - антитела к овальбумину обнаружить не удалось. Аналогичный подход применили Ямамото и др., которые разработали рабочий электрод из титановой проволоки, модифицированной антигеном или антителом, и электрод сравнения - тита новую проволоку, на которую нанесена мочевина. При изучении связывания хорионического гонадотропина человека с антителами к hCG в вероналовом буфере было обнаружено, что при добавлении в систему связывающего компонента. измеряемый потенциал изменяется экспоненциально.


Аизава и сотр. с помощью пары обычных хлорсеребряных электродов с аналогичными мембранами, одна из которых содержала антиген, определяли наличие антител Вассермана. Асимметричный мембранный потенциал, который возникал в ходе реакции,, зависел от концентрации антител.

Главное ограничение всех этих методик состоит в том, что эффекты, связанные с изменением потенциала, невелики, и поэтому точность и чувствительность анализа в очень большой степени лимитируются эффектами фона. Сравнительно недавно для определения различных веществ стали применяться полевые транзисторы. По сути дела, полевой транзистор - это устройство для измерения заряда; принцип его действия представлен на рис.1. Область полупроводника между истоком и стоком, называемая каналом, обладает переменным сопротивлением, которое зависит от напряженности электрического поля на диэлектрике. В свою очередь это поле изменяется под влиянием напряжения на затворе VG, а также разности потенциалов на поверхности раздела мембрана - раствор. Поэтому в иммунохимических транзисторах иммобилизованные антитела и другие ионы, присутствующие в растворе, вносят вклад в это поле. Разность потенциалов между истоком и стоком Vp обусловливает электрический ток ID. Следовательно, измерение VD и VG должно отражать эффект связывания белков поверхностью. ПТ с мембраной, содержащей антигены к антителам против сифилиса, описан Коллинзом и Джанатой.

Затем Джаната и Блакберн опубликовали результаты теоретических исследований такого устройства с иммобилизованными на канале ПТ антителами. Их выводы справедливы и по отношению к любым потенциометрическим приборам непосредственного измерения. Джаната и Блакберн подчеркивали, что в настоящее время невозможно изготовить устройство для прямого измерения степени специфического связывания в силу мешающих измерениям взаимодействий белков с мембраной и локальных изменений концентраций ионов, а также из-за отсутствия границы раздела с бесконечно большим сопротивлением переносу ионов. Они считают, что выходные сигналы описанных в литературе иммунохимических потенциометрических сенсоров на самом деле являются только артефактами, которые можно объяснить особенностями кинетики реакций на электродах.

Косвенное определение на базе ионо- или газоселективных электродов

Рассмотренная в предыдущем разделе проблематичность создания приборов для непосредственного потенциометрического иммуноанализа привела к тому, что основное внимание стало уделяться разработке устройств, в которых с помощью стандартных или модифицированных ионо- или газоселективных электродов определяют продукты ферментативной реакции, образующиеся в ходе иммуноферментного анализа.

В потенциометрическом иммуноанализе впервые в качестве ферментной метки применили уреазу. Этот фермент катализирует превращение мочевины в аммиак и диоксид углерода:

Уреаза имеет значительно более высокую молярную ферментативную активность, чем другие обычно применяемые в качестве меток ферменты. Образующиеся в этой реакции ионы аммония легко определить с помощью обычного аммоний-селективного электрода. Эта реакция положена в основу конкурентных методик иммунохимического определения бычьего сывороточного альбумина и циклического аденозинмонофосфата сАМР. Схема методик - представлена на рис.2. Выделенный центрифугированием осадок, содержащий иммунный комплекс, повторно суспендируют, после чего определяют активность фермента по начальной скорости образования аммиака при добавлении субстрата. Чувствительность при определении БСА составила 10 нг/мл, а сАМР - 10-7 М. Гебауэр и Рехниц или пероксидазой хрена. Таким путем определяли IgG человека и дигоксин соответственно. Привлекает внимание своей новизной и простотой методика определения дигоксина. Метод основан на конкурентном связывании дигоксина в пробе и дигоксина, иммобилизованного на твердой фазе, с ограниченным числом антител против дигоксина, меченных пероксидазой. В качестве твердой фазы используют частицы латекса; на них иммобилизован конъюгат дигоксина с бычьим сывороточным альбумином. После центрифугирования осадок повторно суспендируют и определяют его ферментативную активность по скорости образования С02 после добавления пирогаллола и пероксида водорода. Время проведения анализа невелико, а чувствительность может достигать нескольких нг/мл. В отличие от оптических методов регистрации электрохимические измерения можно выполнять и в мутных растворах.