Смекни!
smekni.com

Вплив імплантації синтетичного макропористого гідрогелю та трансплантації клітин нюхової цибулини на процеси регенерації спинного мозку після його травматичного пошкодження в експерименті (стр. 6 из 6)

Ключові слова: експериментальна травма спинного мозку, відновна нейрохірургія, синтетичний макропористий гідрогель, нюхова цибулина, нейрогенні клітини, нейротрансплантація, електронейроміографія, аксональний ріст.


АННОТАЦИЯ

Медведев В.В. – «Влияниеимплантации синтетического макропористого гидрогеляи трансплантации клетокобонятельной луковицы на процессы регенерации спинного мозга послеего травматического повреждения вэксперименте». – Рукопись.

Диссертация на соискание научной степени кандидата медицинских наук по специальности 14.01.05 — нейрохирургия. Государственное учреждение «Институт нейрохирургии имени академика А.П. Ромоданова АМН Украины», г. Киев, 2008 г.

Диссертация посвящена проблеме восстановительного лечения последствий травматического повреждения спинного мозга в эксперименте.

Цель – изучить влияние имплантации синтетического гидрогеля и трансплантации клеток обонятельной луковицы (ТКОЛ) на регенерационные процессыв спинном мозге белых беспородных крыс (самцыв возрасте 5,5 мес и массой 250–300 гр) после моделированияего левостороннего половинного пересечения (ЛПП) в нижнегрудном отделе.

Материалы и методы. Экспериментальные группы животных: группа „контроль”: моделирование ЛПП спинного мозга в нижнегрудном отделе (n=24); группа „гидрогель”: имплантация синтетического гидрогеля в зону ЛПП непосредственно после нанесения травмы (n=37); группы, животным которых через 4 (n=12) и 8 (n=8) нед послеимплантации гидрогеля в ткань спинного мозга вводили суспензию клетокобонятельной луковицы (ОЛ); группы, животным которых через 7 (n=4) и 13 (n=4) нед послемоделирования ЛПП в ткань спинного мозга вводили суспензию клетокобонятельной луковицы (ОЛ). Клетки выделяли изОЛ зрелых крыси культивировали вприсутствии факторов роста hEGF и hFGF. Учет результатов проводили согласно шкале двигательной активности D.M. Basso, M.S. Beattie та J.C. Bresnahan (BBB), с помощью метода электронейромиографии, а также при помощи стандартного комплекса патоморфологических исследований.

Результаты.На 16-й неделе после имплантации гидрогеля отмечалось достоверное улучшение функции задних конечностей на 2–2,44 балла по шкале ВВВ в сравнении с животными, перенесшими изолированое ЛПП.

Вслучаеизолированного ЛПП на 7-ойнеделенаблюденияопределяется достоверный пик средних значениймаксимальной амплитуды М-ответа, которые диссонируютсо значениями показателя функциональной активности задних конечностей на этом этапенаблюдения, что можетрасцениваться как проявление посттравматического растормаживания мотонейронального аппарата спинного мозга ниже уровня повреждения и компенсаторной гипертрофии активных двигательных единиц исследуемой мышцы задней ипсилатеральной конечности (ЗИК).

Организация зоны имплантации гидрогеля происходит при участииэлементов нежного соединительнотканного матриксапри незначительном вовлечении глиального компонента, что является главным условием регенерационного роста миелинизированных волокон малого и среднего калибрав периферическихотделах гелевого имплантатаначиная с 3-ейнедели после имплантации.

Имплантация гидрогеля сопровождаетсяформированием фазной динамики показателей электрической активности: фаза роста (1–7 нед); стабилизация (7–23 нед, в группе „контроль” аналог этой фазы отсутствует); декомпенсация, пик и регрессия (24–31 нед).

Проведение ТКОЛ через 4 нед послеимплантации гидрогеля и через 7 нед после моделирования изолированного ЛПП определяет возникновение достоверного пикаскоростироста функции ЗИК на 10–12неделе общего периода наблюдения.

ТКОЛ, проведенная через 8 нед после имплантации гидрогеля и через 13 нед после ЛПП, не сопровождается положительным эффектом на функциональном уровне.

ТКОЛ, особенновслучае проведения ее после моделирования изолированного ЛПП, сопровождается снижением значений МА М-ответаисследуемой мышцы ЗИК, не влияя на временную структуру динамики этого показателя.

Выводы.Имплантация гидрогеляоказывает протекторное влияние на нервные волокна и нейрональные клетки прилегающих участков спинного мозга, а также в определенной мере способствует ведению регенерационного роста миелинизированных волокон в зоне посттравматической организации.ТКОЛ, проведенная в отдаленном периоде травматического процесса, проявляет слабоположительный функциональный эффект, который сопровождается снижениемчрезмерной электрической активностивэфферентных отделах двигательной системы. Совместное применение этих двух методов восстановительного лечения в рамках протокола, использованного в данном исследовании, не сопровождается прямой суммацией положительных эффектов каждого из них, однако повышает общую результативность лечения последствий экспериментальной травмы спинного мозга.

Ключевые слова: экспериментальная травма спинного мозга, восстановительная нейрохирургия, синтетический макропористый гидрогель, обонятельная луковица, нейрогенные клетки, нейротрансплантация, электронейромиография, аксональный рост.


SUMMARY

Medvedjev V.V. – «The effect of synthetic macroporous hydrogel implantation and olfactory bulb cells transplantation upon the spinal cord regeneration processes after its expiremental traumatic injury»– the manuscript.

The dissertation on scientific degree of the candidate of medical sciences obtaining on a speciality 14.01.05 – neurosurgery. State institution «Institute of neurosurgery named after academician A.P. Romodanov of Academy of Medical Sciences of Ukraine», Kyiv, 2008.

The dissertation is dedicated to a problem of spinal cord restoration after experimental traumatic injury.

The restorative effect of synthetic macroporous hydrogelimplantation and allogenic olfactory bulb’ cells transplantation (OBCT) after left-side hemisection (LH) of male rats' (age – 5,5 m; weight – 250–300 g) spinal cordwere studied. Ahydrogel was implanted into the LH zone immediately. OBCT wasmade in 4 and 8 weeks after hydrogel implantation and in 7 and 13 weeks after LH only into the spinal cord tissue below theLHsite. At the 16th week hydrogel implantation leads to significant hind limb function improvement in 2–2,44 grades of BBB scale. OBCT in 4 weeks after hydrogel implantation and in 7 weeks after LH leads to the appearance of the significance peak of speed of ipsilateral hind limb function increase at the 4th-6th weeks after transplantation. Hydrogel implantation was accompanied by distinctive trisegmental dynamics of electrical activity indices: growth phase (1–7 weeks); stabilization (7–23 weeks, it is absent in the case of isolated LH); decompansation, peak and regression (24–31 weeks). OBCT leads to explicit reduction of excessive electric activity in efferent part of locomotor system.

Keywords: spinalcordinjurymodels, restorativeneurosurgery, syntheticmacroporoushydrogel, olfactorybulb, neuralprogenitorcells, neurotransplantation, electroneuromyographical recording, axonal growth.


СПИСОК СКОРОЧЕНЬ

ЗІК – задня іпсилатеральна місцю травми кінцівка

ЗКК – задня контрлатеральна місцю травми кінцівка

ЛПП – лівобічний половинний перетин (спинного мозку)

НОГ – нюхові огортаючи гліоцити

НЦ – нюхова цибулина

МА М-відповіді – максимальна амплітуда М-відповіді

ОПП – однобічний половинний перетин (спинного мозку)

ПФ – показник функції

РО – рухова одиниця

ШПЗ – швидкість проведення збудження

ТКНЦ – трансплантація клітин нюхової цибулини

BBB – шкала Basso-Beattie-Bresnahan