регистрация / вход

Физиология сна

Понятие сна, его значение в жизни и здоровье человека. Сущность основных теорий сна, их содержание и подходы к исследованию. Физиология сна, его главные фазы и механизмы, физиологическая и психологическая значимость. Характеристика нарушений сна.

Введение

Что такое сон, для чего он нужен организму? Вопрос о функциональном назначении столь обыденного состояния кажется настолько наивным, что даже не требует раздумий: конечно, для отдыха! Однако такой ответ порождает цепочку новых вопросов: что такое отдых? Почему он столь продолжителен и столь сложно организован? Почему приурочен к определенным периодам суток? Почему для отдыха недостаточно телесного покоя, а необходимо еще и выключение органов чувств, что, казалось бы, резко повышает уязвимость по отношению к неблагоприятным факторам среды? Почему теплокровные животные, у которых «постоянство внутренней среды является залогом свободной жизни», вынуждены, подобно своим холоднокровным предкам, каждые сутки на несколько часов впадать в состояние неподвижности и ареактивности?

На протяжении многих столетий сон рассматривался именно по этим внешним признакам, то есть состоянию покоя и пониженной реактивности. Такому подходу не смогло помешать даже формирование представлений о двух состояниях «внутри» естественного сна, принципиально отличных друг от друга и от бодрствования (медленно волновая и парадоксальная фазы). Однако в последнее время появляется все большее число фактов, которые не укладываются в такие представления. Так, в начале 80-х годов сотрудники I Московского медицинского института В.С. Ротенберг и С.И. Кобрин, изучая сон больных с полной атрофией мышечной системы, не выявили его сокращения, хотя эти больные вовсе не нуждались в соматическом (телесном) «отдыхе». Значит, сон не есть покой, а телесный отдых вовсе не обязательный элемент физиологического сна.

Аналогичным образом можно рассмотреть и такую общепринятую характеристику сна, как ареактивность, то есть психическую заторможенность, отсутствие реакции на внешние стимулы. Во-первых, это «апостериорный» признак сна, поскольку порог пробуждения можно определить, лишь разбудив человека. Во-вторых, ареактивность, так же как и неподвижность, не служит достаточным признаком, поскольку она характерна для целого ряда заболеваний и других патологических состояний: фармакологического сна, наркоза, комы и прочего.


1. Природа сна

1.1 Теории сна

Гуморальная теория, в качестве причины сна рассматривает вещества, появляющиеся в крови при длительном бодрствовании. Доказательством этой теории служит эксперимент, при котором бодрствующей собаке переливали кровь животного, лишенного сна в течение суток. Животное-реципиент немедленно засыпало. В настоящее время удалось идентифицировать некоторые гипногенные вещества, например пептид, вызывающий дельта-сон. Но гуморальные факторы не могут рассматриваться как абсолютная причина возникновения сна. Об этом свидетельствуют наблюдения за поведением двух пар неразделившихся близнецов. У них разделение нервной системы произошло полностью, а системы кровообращения имели множество анастомозов. Эти близнецы могли спать в разное время: одна девочка, например, могла спать, а другая бодрствовала.

Ретикулярная теория сна и бодрствования. В ретикулярной формации ствола мозга находится множество нейронов, аксоны которых идут почти ко всем областям головного мозга (кроме неокортекса). В конце 1940-х годах Моруцци и Мэгуном было обнаружено, что высокочастотное раздражение ретикулярной формации ствола мозга кошек приводит к их мгновенному пробуждению. Повреждение ретикулярной формации вызывает постоянный сон, перерезка же сенсорных трактов такого эффекта не дает. Ретикулярную формацию стали рассматривать как область головного мозга, участвующую в поддержании сна. Сон наступает, когда ее активность пассивно, либо под действием внешних факторов падает. Активация ретикулярной формации зависит от количества сенсорных импульсов, поступающих в нее, а так же от активности нисходящих волокон между передним мозгом и стволовыми структурами. Однако позднее было установлено, что: ретикулярная формация вызывает не только бодрствования, но и сон, что зависит от места наложения электродов при стимуляции ее электрическим раздражителем; нейронное состояние ретикулярной формации в бодрствующем состоянии и во время сна мало, чем отличается; ретикулярная формация является не единственным центром бодрствования: они так же представлены и в медиальном таламусе, и в переднем гипоталамусе.

Серотонинергическая теория сна и бодрствования. В верхних отделах ствола мозга обнаружены две области: ядро шва и голубое пятно. Медиатором в клетках ядра шатра является серотонин, а голубого места – норадреналин. В конце 1960-х Жуве пришел к выводу, что эти две нейронные системы принимают в участии возникновении сна. Разрушение ядер шва у кошки приводит к полной бессоннице в течение нескольких дней, за несколько последующих недель сон восстанавливается. Частичная бессонница может быть вызвана подавлением синтеза серотонина хлорфенилаланином, введением предшественника серотонина ее можно устранить. Разрушение голубого пятна приводит к полному исчезновению БДГ-сна, но не влияет на медленный сон. Истощение запасов серотонина вызывает бессонницу, а введение предшественников серотонина нормализует только медленный сон. Все это позволило предположить, что серотонин приводит к торможению структур, ответственных за бодрствование. Было установлено, что голубое пятно подавляет импульсацию ядра шва, и это ведет к пробуждению.

Сейчас доказано, что нейроны ядер шва выделяют серотонин во время бодрствования: он служит медиатором в процессе пробуждения и «гормоном сна» в бодрствующем состоянии: стимулируя выход вещества сна, который вызывает сон. Фаза БДГ-сна обеспечивается подголубоватым ядром. Было показано, что сон и бодрствование определяются активацией специфических центров головного мозга. Одни из таких центров является ретикулярная формация, которая расположена в стволе мозга. Он из основных компонентов ретикулярной формации являются холинергические ядра, расположенные на уровне мосто-среднемозгового сочленения. Нейроны этих ядер имеют высокий уровень активности во время бодрствования и REM-фазы и инактивированны во время медленного сна.

В регуляции процессов сна-бодрствования принимают участие и другие эргические системы головного мозга, медиаторами которых являются: серотонин, норадреналин, гистамин, глутамат, вазопрессин. Вероятно, что диссомнии обусловлены нарушением функционирования нейротрансмиттерных систем.

Подкорковая и корковая теории сна: при различных опухолевых или инфекционных поражениях подкорковых, особенно стволовых, образований мозга, у больных отмечаются различные нарушения сна – от бессонницы до длительного летаргического сна, что указывает на наличие подкорковых центров сна. При раздражении задних структур субталамуса и гипоталамуса животные засыпали, а после прекращения раздражения они просыпались, что указывает на наличие в этих структурах центров сна. В лаборатории И.П. Павлова было установлено, что при длительной выработке тонкого дифференцировочного торможения животные часто засыпали. Поэтому ученый рассматривал сон как следствие процессов внутреннего торможения, как углубленное, разлитое, распространившееся на оба полушария и ближайшую подкорку торможение (корковая теория сна).

Однако ряд фактов не могли объяснить ни корковая, ни подкорковая теории сна. Наблюдения за больными, у которых отсутствовали почти все виды чувствительности, показали, что такие больные впадают в состояние сна как только прерывается поток информации от действующих органов чувств. Например, у одного больного из всех органов чувств был сохранен только один глаз, закрытие которого погружало больного в состояние сна. Многие вопросы организации процессов сна получили объяснение с открытием восходящих активирующих влияний ретикулярной формации ствола мозга на кору больших полушарий. Экспериментально было доказано, что сон возникает во всех случаях устранения восходящих активирующих влияний ретикулярной формации на кору мозга. Были установлены нисходящие влияния коры мозга на подкорковые образования. В бодрствующем состоянии при наличии восходящих активирующих влияний ретикулярной формации на кору мозга нейроны лобной коры тормозят активность нейронов центра сна заднего гипоталамуса. В состоянии сна, когда снижаются восходящие активирующие влияния ретикулярной формации на кору мозга, тормозные влияния лобной коры на гипоталамические центры сна снижаются.

Между лимбико-гипоталамическими и ретикулярными структурами мозга имеются реципрокные отношения. При возбуждении лимбико-гипоталамических структур мозга наблюдается торможение структур ретикулярной формации ствола мозга и наоборот. При бодрствовании за счет потоков афферентации от органов чувств активируются структуры ретикулярной формации, которые оказывают восходящее активирующее влияние на кору больших полушарий. При этом нейроны лобных отделов коры оказывают нисходящие тормозные влияния на центры сна заднего гипоталамуса, что устраняет блокирующие влияния гипоталамических центров сна на ретикулярную формацию среднего мозга. При уменьшении потока сенсорной информации снижаются восходящие активирующие влияния ретикулярной формации на кору мозга. В результате чего устраняются тормозные влияния лобной коры на нейроны центра сна заднего гипоталамуса, которые начинают еще активнее тормозить ретикулярную формацию ствола мозга. В условиях блокады всех восходящих активирующих влияний подкорковых образований на кору мозга наблюдается медленно волновая стадия сна.

Гипоталамические центры за счет связей с лимбическими структурами мозга могут оказывать восходящие активирующие влияния на кору мозга при отсутствии влияний ретикулярной формации ствола мозга. Эти механизмы составляют корково-подкорковую теорию сна (П.К. Анохин), которая позволила объяснить все виды сна и его расстройства. Она исходит из того, что состояние сна связано с важнейшим механизмом – снижением восходящих активирующих влияний ретикулярной формации на кору мозга. Сон бескорковых животных и новорожденных детей объясняется слабой выраженностью нисходящих влияний лобной коры на гипоталамические центры сна, которые при этих условиях находятся в активном состоянии и оказывают тормозное действие на нейроны ретикулярной формации ствола мозга.

Сон новорожденного периодически прерывается только возбуждением центра голода, расположенного в латеральных ядрах гипоталамуса, который тормозит активность центра сна. При этом создаются условия для поступления восходящих активирующих влияний ретикулярной формации в кору. Эта теория объясняет многие расстройства сна. Бессонница, например, часто возникает как следствие перевозбуждения коры под влиянием курения, напряженной творческой работы перед сном. При этом усиливаются нисходящие тормозные влияния нейронов лобной коры на гипоталамические центры сна и подавляется механизм их блокирующего действия на ретикулярную формацию ствола мозга. Длительный сон может наблюдаться при раздражении центров заднего гипоталамуса сосудистым или опухолевым патологическим процессом. Возбужденные клетки центра сна непрерывно оказывают блокирующее влияние на нейроны ретикулярной формации ствола мозга.

Иногда во время сна наблюдается так называемое частичное бодрствование, которое объясняется наличием определенных каналов реверберации возбуждений между подкорковыми структурами и корой больших полушарий во время сна на фоне снижения восходящих активирующих влияний ретикулярной формации на кору мозга. Например, кормящая мать может крепко спать и не реагировать на сильные звуки, но она быстро просыпается даже при небольшом шевелении ребенка. В случае патологических изменений в том или ином органе усиленная импульсация от него может определять характер сновидений и быть своего рода предвестником заболевания, субъективные признаки которого еще не воспринимаются в состоянии бодрствования.

Диафферентационная теория сна и бодрствования. В конце 1930-х годов Бремер обнаружил, что ЭЭГ кошки с перерезкой, отделяющей спинной мозг от головного после восстановления от операционного шока демонстрирует циклические чередования, характерный для сна-бодрствования. Если перерезка произведена на уровне четверохолмия, то есть исключены сенсорные стимулы, кроме зрительных и обонятельных, наблюдается типичная для сна ЭЭГ. Бремер пришел к выводу, что ЦНС индуцируется и поддерживается: для бодрствования необходимо минимума сенсорной стимуляции, сон – состояние, характеризующееся, прежде всего, снижением эффективности сенсорной стимуляции мозга, что подтверждает теорию пассивного бодрствования.

Однако: во-первых – в изолированном переднем мозге со временем проявляются ритмические колебания, характерные для ритма сон-бодрствования. Кроме того, изоляция человека в звуконепроницаемой камере приводит к уменьшению длительности сна. Во-вторых – данные о влиянии коры на состояние бодрствования неверны, так как циркадные ритмы сна-бодрствования наблюдаются и у новорожденных детей аэнцефаликов.

Эндогенная теория сна. Человек ощущает определенную потребность во сне, что связывают с наличием факторов сна, циркулирующих в крови. Тогда во время сна должны восстанавливаться их нормальные концентрации. Предполагается, что факторы сна накапливаются во время бодрствования до вызывающего сон уровня. Согласно другой гипотезе эти факторы накапливаются во время сна: образуются и выделяются. Из мочи и спиномозговой жидкости был выделен гликопептид – дельта-пептид, вызывающий медленный сон при введении другим животным. Есть фактор и БДГ-сна. Вторая гипотеза привела к открытию в крови пептида дельта-сна, вызывающего глубокий сон.

Однако найденные факторы вызывают сон у человека и только у некоторых видов животных. Кроме того, он может возникнуть и под действием других видов веществ. На сегодняшний день неизвестно, какую физиологическую роль в процессе выполняют найденные факторы.

Фармакологический соннеадекватен по своим механизмам естественному сну. Снотворные препараты ограничивают активность разных структур мозга – ретикулярной формации, гипоталамической области, коры головного мозга. Это приводит к нарушению естественных механизмов формирования стадий сна, нарушению процесса консолидации памяти, переработки и усвоения информации.

1.2 И.П. Павлов и природа сна

Известно, что Павлов чрезвычайно интересовался проблемой сна и считал ее одной из ключевых в изучении высшей нервной деятельности. Все знают его определение сна как «разлитого коркового торможения». После открытия парадоксального сна казалось, что павловская теория в этой своей части безнадежно устарела. Однако, справедливости ради, следует напомнить, что идея о трех формах существования – бодрствование, спокойный сон и сон сосновидениями – первые прозвучала в Упанишадах, древнеиндийском эпосе. В истории же европейской культуры такое, кажется, не приходило в голову никогда и никому до Жуве. Даже первооткрыватели парадоксального сна – Н. Клейтман, Ю. Азеринский и В. Демент назвали это состояние stage-1-REM, то есть стадией засыпания (дремотой) с быстрыми движениями глаз, воспринимая его лишь как переходное между бодрствованием и сном!

Если же взять медленно волновый (ортодоксальный) сон, сон вообще, то сейчас, на рубеже веков, уместно задаться вопросом: а так ли уж неправ был Павлов в своих представлениях о сне? Разумеется, в ту, «доэлектрофизиологическую» эпоху эти представления могли быть лишь чисто интуитивными. Но читатель настоящей статьи, зная о мощной активации тормозных нейронов и выбросе их медиаторов – ГАМК и аденозина в медленном сне, об активации, которая начинается в локальных таламокортикальных областях и постепенно распространяется по всей системе, о тонической гиперполяризации как периоде своеобразного функционального восстановления нейронов и т.п., вправе сам судить, подвела ли интуиция на сей раз гениального ученого. В конце своей долгой жизни, в 1935 году, Павлов высказал следующую мысль: «Ясное дело, что наша дневная работа представляет сумму раздражений, которая обуславливает известную сумму истощения, и тогда эта сумма истощения, дошедшая до конца, и вызывает автоматически, внутренним гуморальным путем, тормозное состояние, сопровождаемое сном». Эту формулировку можно назвать пророческой – она звучит вполне актуально и в наши дни.


2. Физиология сна

2.1 Фазы сна

Появление электроэнцефалографии во второй половине XX в. позволило, наконец, строго разграничить фазы сна и тем самым подойти к выяснению их физиологической роли. Поскольку идентификацию сна, его фаз и стадий физиологи проводят на основе общепринятых, так называемых полиграфических, критериев, полиграмм – электроэнцефалограммы (ЭЭГ), электромиограммы (ЭМГ), электроокулограммы (ЭОГ), то естественно определять сущность сна по этим показателям. Однако и здесь мы сталкиваемся с теми же трудностями: нет ни одного признака, достаточного для определения сна. Отдельные характеристики медленного и парадоксального сна на ЭЭГ иногда встречаются и в других состояниях. Так, при различных формах патологии и под влиянием фармакологических препаратов на ЭЭГ наблюдаются те или иные изменения, «имитирующие» определенные стадии сна.

Вероятнее всего необходимым и достаточным признаком сна можно считать ритмичность, то есть чередование определенных физиологических признаков (полиграфических картин), позволяющих отличить нормальный сон от монотонных «сноподобных состояний». Соответственно и критерием «нормальности» сна служит циклическое чередование стадий 1–2–3–4 медленного сна, которое завершается парадоксальной фазой. На основе такого подхода современное определение сна звучит следующим образом: это «особое генетически детерминированное состояние организма человека (и теплокровных животных, то есть млекопитающих и птиц), характеризующееся закономерной последовательной сменой определенных полиграфических картин в виде циклов, фаз и стадий».

Что же лежит за этим циклическим чередованием? Каково назначение каждой из двух фаз сна? В физиологии для понимания функций отдельного органа применяют классический метод разрушения: если повредить или удалить данный орган, то, зная последствия и адекватно истолковывая их, можно выяснить его роль. Подобный подход используют и в отношении сна: не давать испытуемому или подопытному животному спать в течение некоторого времени и посмотреть, что при этом меняется в организме и поведении. Впервые такие опыты выполнила более 100 лет назад русская ученая М.М. Манасеина (1843–1903), которая стала в сущности основоположником «науки о сне» – сомнологии.

В нашем столетии в экспериментах на животных и в наблюдениях за здоровыми людьми неоднократно пытались выяснить, к чему приводит депривация сна. Однако лишь с использованием электроэнцефалографии такие попытки получили научное обоснование. Исследования последних лет на людях дали до некоторой степени парадоксальные результаты: депривация в течение одних или нескольких суток наиболее мягким, щадящим способом не приводила к серьезным нарушениям в организме и психике субъектов. Наблюдалась лишь повышенная сонливость, утомляемость, раздражительность, рассеянность. Казалось, что главный результат лишения сна – нарастающая потребность в нем! Естественно, подобные работы на людях не могут длиться более 2–3 суток; поэтому последствия длительного лишения сна изучают только в опытах на животных.

Так, в 80-е годы группа американских специалистов (А. Речшаффен и сотрудники) получила принципиально важные результаты. Как показали эксперименты, если при первых признаках сна на ЭЭГ (появление сонных веретен и дельта-волн) животных будить, то наступает временное «дробление» сна на очень короткие периоды и его пространственная «локализация», когда сон протекает в отдельных участках мозга. Подобный феномен в опытах на обезьянах описал И.Н. Пигарев (Институт проблем передачи информации РАН), а Л.М. Мухаметов с сотрудниками (Институт проблем экологии и эволюции им. А.Н. Северцова РАН) наблюдали чередующийся однополушарный медленный сон у дельфинов и ушастых тюленей. Сопоставив эти результаты с некоторыми другими данными по хронической депривации с помощью физических методов, ученые пришли к неожиданному выводу: полностью исключить медленный сон в принципе невозможно.

Как показали эксперименты, через несколько недель от начала хронической депривации у крыс «давление» медленного сна уменьшилось, и если депривация прекращалась, то «отдачи» медленного сна не наблюдалось. Ясно, что вначале это «давление» растет, а затем, по достижении некоторого критического уровня, – спадает на нет в результате постепенной адаптации феноменов и структуры медленного сна к условиям депривации.

Совершенно противоположные результаты получены в отношении парадоксального сна. Опыты Речшаффена и сотрудников продемонстрировали, что, какой бы вид депривации сна ни проводился (тотальное лишение сна, избирательное лишение медленной или парадоксальной фазы), в результате всегда критично угнетение именно парадоксального сна. Рано или поздно оно приводит к одним и тем же драматическим последствиям (изменению внешнего вида, поведения и внутренних органов), которые через несколько «бессонных» недель завершаются неизбежной гибелью животных. Характерно, однако, что непосредственной причины их гибели обнаружить не удалось.

Интересно, что у крыс наблюдалось резкое падение амплитуды ЭЭГ после хронической депривации, которое возникало каждый раз примерно за сутки до гибели животного. Если на этом фоне эксперимент прекращался, то крыса уже не могла заснуть и амплитуда ЭЭГ не восстанавливалась; смерть все равно наступала в течение суток. Следовательно, это падение амплитуды ЭЭГ указывало на какое-то необратимое нарушение работы мозга, вызванное лишением парадоксального сна. Если же опыт прекращался на позднем этапе депривации, но до наступления этого критического момента, то наблюдалась мощная «отдача» только парадоксального сна, независимо от того, какой вид депривации применялся – лишение всего сна, парадоксального или медленного.

Таким образом, опыты с длительным лишением сна у лабораторных животных еще раз показывают, что сон включает два принципиально различных состояния организма – медленно волновую и парадоксальную (быструю) фазы, подтверждая гениальную догадку М. Жуве, впервые высказанную почти 40 лет назад: «Кто познает тайну сна, познает тайну мозга».

2.2 Механизмы сна

Один из главных вопросов, волновавших физиологов еще со времен Павлова, – это существование в мозге «центра сна». Во второй половине нашего столетия прямое изучение нейронов, вовлеченных в регуляцию сна-бодрствования, показало, что нормальная работа таламокортикальной системы мозга, обеспечивающая сознательную деятельность человека в бодрствовании, возможна только при участии определенных подкорковых, так называемых активирующих, структур. Благодаря их действиям в бодрствовании мембрана большинства кортикальных нейронов деполяризована на 10–15 мВ по сравнению с потенциалом покоя – (65–70) мВ. Только в состоянии этой тонической деполяризации нейроны способны обрабатывать информацию и отвечать на сигналы, приходящие к ним от других нервных клеток (рецепторных и внутримозговых).

Как сейчас ясно, таких систем тонической деполяризации, или активации мозга (условно «центров бодрствования»), несколько – вероятно, пять или шесть. Располагаются они на всех уровнях мозговой оси: в ретикулярной формации ствола, в области голубого пятна и дорзальных ядер шва, в заднем гипоталамусе и базальных ядрах переднего мозга. Нейроны этих отделов выделяют медиаторы – глутаминовую и аспарагиновую кислоты, ацетилхолин, норадреналин, серотонин и гистамин, активность которых регулируют многочисленные пептиды, находящиеся с ними в одних и тех же везикулах. У человека нарушение деятельности любой из этих систем не компенсируется за счет других, несовместимо с сознанием и приводит к коме.

Казалось бы, если в мозге есть «центры бодрствования», то по крайней мере должен быть один «центр сна». Однако в последние годы выяснилось, что в сами «центры бодрствования» встроен механизм положительной обратной связи. Это особые нейроны, которые осуществляют торможение активирующих нейронов и сами тормозятся ими. Такие нейроны разбросаны по разным отделам мозга, хотя больше всего их в ретикулярной части черного вещества. Все они выделяют один и тот же медиатор – гамма-аминомасляную кислоту, главное тормозное вещество мозга. Стоит только активирующим нейронам ослабить свою деятельность, как включаются тормозные нейроны и ослабляют ее еще сильнее. В течение некоторого времени процесс развивается по нисходящей, пока не срабатывает некий «триггер» и вся система переключается либо в состояние бодрствования, либо парадоксального сна. Объективно этот процесс отражает смена картин электрической активности головного мозга (ЭЭГ) по ходу одного полного цикла сна человека (90 мин).

В последнее время внимание исследователей привлечено еще к одной эволюционно древней тормозной системе головного мозга, использующей в качестве медиатора нуклеозид аденозин. Японский физиолог О. Хаяйси с коллегами показали, что синтезируемый в мозге простагландин D2 участвует в модуляции аденозинэргических нейронов. Поскольку главный фермент этой системы – простагландиназа-D – локализован в мозговых оболочках и хороидном плексусе, очевидна роль этих структур в формировании определенных видов патологии сна: гиперсомнии при некоторых черепно-мозговых травмах и воспалительных процессах менингеальных оболочек, африканской «сонной болезни», вызываемой трипаносомой, которая передается через укусы мухи цеце и пр.

Прямая регистрация одиночной активности нейронов мозга в экспериментах на лабораторных животных показала, что в бодрствовании (в состоянии тонической деполяризации) характер разрядов таламокортикальных клеток высоко индивидуален. Но по мере углубления сна и нарастания синхронизированной активности в ЭЭГ начинают преобладать более мощные тормозные постсинаптические потенциалы, перемежающиеся периодами экзальтации – высокочастотными вспышками нейронных разрядов (такой рисунок нейронной активности называется «пачка-пауза»). Тогда появляется «хоровая» активность нейронов, и условия для переработки информации в мозге, причем не только поступающей от органов чувств, но и хранящейся в памяти, резко ухудшаются. Однако средняя частота импульсации корковых и таламических нейронов не снижается, а у ГАМК-эргических (тормозных) нейронов она даже значительно повышается. Что касается активирующих нейронов, то их разряды становятся реже. Эти нейрофизиологические феномены хорошо коррелируют с известными данными о постепенном торможении психической активности по мере углубления медленного сна у человека.

Если с точки зрения нейронной активности бодрствование – это состояние тонической деполяризации, то медленный сон – тоническая гиперполяризация. При этом направление движения через клеточную мембрану основных ионных потоков (катионов Na+, K+, Ca2+, анионов Cl–), а также важнейших макромолекул меняется на противоположное.

Таким образом, можно было бы сказать, что во время медленного сна восстанавливается мозговой гомеостаз, нарушенный в ходе многочасового бодрствования. С этой точки зрения бодрствование и медленный сон – как бы «две стороны одной медали». Периоды тонической деполяризации и гиперполяризации должны периодически сменять друг друга, чтобы сохранить постоянство внутренней среды головного мозга и обеспечить нормальную работу таламокортикальной системы – субстрата высших психических функций человека. Отсюда ясно, почему в мозге нет единого «центра медленного сна» – это значительно уменьшило бы надежность всей системы, сделало бы ее более жестко детерминированной, полностью зависящей от «капризов» этого центра в случае каких-либо нарушений его работы.

С другой стороны, становится также понятно, почему почти невозможно длительное полное подавление медленного сна: в норме активность периодически сменяется покоем, бодрствование – медленным сном, охватывающим весь мозг целиком. Известно, что при искусственной хронической депривации механизмы бодрствования и медленного сна начинают функционировать диффузно и одновременно. При этом, разумеется, страдает нормальное поведение, зато, несмотря на депривирующее воздействие, восстанавливается мозговой гомеостаз. Однако и здесь все не так просто. Недавно Пигарев в опытах на кошках показал, что по мере развития синхронизации в ЭЭГ первичные нейроны зрительной и слуховой коры перестают реагировать на специфические стимулы и начинают все в большей степени отвечать на импульсацию, приходящую в кору со стороны внутренних органов. Принимая во внимание обнаруженные особые Ca-каналы на мембране многих корковых нейронов, которые открываются при гиперполяризации, можно предположить, что в медленном сне мозг не прекращает перерабатывать информацию, а переходит от обработки внешних сигналов к интероцептивной импульсации.

Таким образом, функция медленного сна, кажется, начинает, наконец, вырисовываться: это восстановление гомеостаза мозговой ткани и оптимизация управления внутренними органами. Для гигиены сна это означает подтверждение старого, как мир, но почему-то забытого правила: без хорошего сна не может быть хорошего бодрствования!

Совершенно по-другому обстоит дело с парадоксальным сном, который, в отличие от медленного сна, имеет ярко выраженную активную природу. Парадоксальный сон запускается из четко очерченного центра, расположенного в задней части мозга, в области варолиева моста и продолговатого мозга, а медиаторами служат ацетилхолин, глутаминовая и аспарагиновая кислоты. Во время парадоксального сна клетки мозга чрезвычайно активны, но информация от органов чувств к ним не поступает и не подается на мышечную систему. В этом и заключается парадоксальность этого состояния.

Видимо, при этом интенсивно перерабатывается информация, полученная в предшествующем бодрствовании и хранящаяся в памяти. Согласно гипотезе Жуве, в парадоксальном сне, пока непонятно как, в нейрологическую память передается наследственная, генетическая информация, имеющая отношение к организации целостного поведения. Подтверждением таких психических процессов служит появление в парадоксальном сне эмоционально окрашенных сновидений у человека, а также обнаруженный Жуве с сотрудниками и детально исследованный Э. Моррисоном с коллегами феномен демонстрации сновидений у подопытных кошек. Они выяснили, что в мозге кошек имеется особая область, ответственная за мышечный паралич во время парадоксального сна. Если ее разрушить, подопытные кошки начинают показывать свой сон: убегать от воображаемой собаки, ловить воображаемую мышь и так далее. Интересно, что «эротические» сны у кошек никогда не наблюдались, даже в брачный сезон.

Хотя в парадоксальном сне некоторые нейроны ретикулярной формации ствола и таламокортикальной системы демонстрируют своеобразный рисунок активности, различия между мозговой деятельностью в бодрствовании и парадоксальном сне довольно долго выявить не удавалось. Это было сделано лишь в 80-е годы. Оказалось, что из всех известных активирующих мозговых систем, которые включаются при пробуждении и действуют во время бодрствования, в парадоксальном сне активны лишь одна-две. Это системы, расположенные в ретикулярной формации ствола и базальных ядрах переднего мозга, использующие в качестве передатчиков ацетилхолин, глутаминовую и аспарагиновую кислоты. Все же остальные активирующие медиаторы (норадреналин, серотонин и гистамин) в парадоксальном сне не работают. Это молчание моноаминоэргических нейронов ствола мозга определяет различие между бодрствованием и парадоксальным сном, или на психическом уровне – различие между восприятием внешнего мира и сновидений. Непонятным оставалось все же, как эта активация, столь отличная от бодрствования, отражается на работе коры. Лишь в 1996–1997 гг. три независимых исследования выявили в парадоксальном сне (методом позитронной эмиссионной томографии) высокоспецифичный характер пространственного распределения активации и инактивации определенных участков коры и некоторых подкорковых ядер в мозге человека.

2.3 Физиологическая значимость сна

При длительном тотальном лишении сна до 116 часов наблюдаются расстройства сна, поведения, психических процессов, аффективной сферы, появление галлюцинаций (особенно зрительных). В первую восстановительную ночь преобладает медленный сон, тогда как наблюдали исчезновение парадоксального сна, но позднее происходило удлинение ПС и увеличение БДГ-сна.

При депривации парадоксального сна происходят нарушения в поведении, появляются страхи, галлюцинации, однако эффект при депривации парадоксального сна был менее значительным, чем при депривации медленного сна. У испытуемых, у которых возникали сновидения в восстановительную ночь не наблюдалось компенсаторного увеличения ПС. У испытуемых, у которых наблюдались нарушения поведения, галлюцинации и так далее наблюдалось увеличение парадоксального сна. Установлено, что во время депривации сна возрастает концентрация дельта пептида, введение его в зону таламуса вызывали увеличение медленного сна и парадоксального сна. Накапливается так же и фактор сна, который используется в иммунологической защите.

Согласно Я. Освальду медленный сон нужен для восстановления работоспособности клеток головного мозга. Во время сна он из гипоталамуса выделяется гормон роста, он участвует в биосинтезе белка в периферических тканях. Биосинтез белков и РНК нейронов интенсифицируется во время парадоксального сна. По Лабори медленный сон связан с метаболической активностью нейроглии.

Дж. Моруцци различает два типа восстановительных процессов в нервной ткани:

а) быстрые процессы: в нейронах, выполняющих функцию проведения и синаптической передачи импульсов, эти процессы длятся в течение нескольких секунд, которые могут иметь место и во время бодрствования, без прерывания активности самого нейрона – сон для этого не нужен;

б) медленные процессы необходимы нейронам, синапсы которых подвержены пластическим изменениям при обучении. Восприятие всех видов сознательной жизни, которые связаны с высшими функциями. Сон это не период восстановления всего мозга, а только период восстановления синапсов с пластическими свойствами.

Парадоксальный сон связывают с мотивационными функциями: во время сновидений происходит удовлетворение тех потребностей, которые не были достигнуты при бодрствовании. Во время сна происходит освобождение мотивационной энергии, тем самым поддерживается состояние организма. У больных эндогенной депрессией, для которых характерны ненормальные яркие сновидения, мотивационные процессы во сне сильно представлены, что приводит к снижению выраженности этих процессов во время бодрствования. С другой стороны депривация БДГ-сна приводит к выраженности мотивационных процессов во время бодрствования снижает выраженность эндогенной депрессии (Вогель). На чем и основано действие антидепрессантов.

В 1958–1960 году была обнаружена закономерность между продолжительностью сна и смертностью. В основном погибают как коротко спящие (4–5 часов в сутки) и так и долго спящие (10–12 часов) от рака, ИБС, часто совершается суициды. Таким образом, сон оказывает восстановительный эффект как на физическое, так и на психическое здоровье.


3. Нарушения сна

3.1 Бессонница. Нарколепсия. Гиперсомния

Бессонница и нарколепсия являются наследственными заболеваниями.

Нарколепсия – нарушение бодрствования, характеризующееся дневными приступами непреодолимого сна. Связывают его с тем, что человек, страдающий нарколепсией, из состояния бодрствования впадает сразу в парадоксальный сон. Симптом – неудержимое засыпание, мышечная слабость. У многих людей циркадный ритм сна – бодрствования нарушен. Слабость в мышцах появляется при гневе, хохоте, плаче и других факторах.

Гиперсомния – необычайная потребность во сне, причиной которой является дисбаланс систем регуляции сна-бодрствования в организме.

Мы видим в сновидениях различные комбинации того, что происходило с нами во время бодрствования: в коре головного мозга во время поверхностного сна или при переходе сна из одной стадии в другую, при засыпании остаются островки – незаторможенные участки коры, и под действием внутренних или внешних раздражителей из них «извлекается» какая-либо информация, события, произошедшие с нами наяву, что и является основой возникновения нереальной реальности.

Во время сна, в своих сновидениях, мы видим себя заболевшими, и через несколько дней мы в действительности заболеваем; дело в том, что мы во сне становимся более чувствительными, острее ощущаем те процессы, которые происходят в нашем организме, которые мы чувствуем в реальности.

Храп: во сне мягкие ткани задней стенки расслабляются и иногда блокируют воздухоносные пути (западание языка – вызывает апноэ – ведет к смерти) Храп – звук, порождаемый вибрациями мягкой ткани, особенно мягким небом.


Заключение

Сон – физиологическое состояние, которое характеризуется потерей активных психических связей субъекта с окружающим его миром. Сон является жизненно необходимым для высших животных и человека. Длительное время считали, что сон представляет собой отдых, необходимый для восстановления энергии клеток мозга после активного бодрствования. Однако оказалось, что активность мозга во время сна часто выше, чем во время бодрствования. Было установлено, что активность нейронов ряда структур мозга во время сна существенно возрастает, то есть сон – это активный физиологический процесс.

Рефлекторные реакции во время сна снижены. Спящий человек не реагирует на многие внешние воздействия, если они не имеют чрезмерной силы. Сон характеризуется фазовыми изменениями ВНД, которые особенно отчетливо проявляются при переходе от бодрствования ко сну (уравнительная, парадоксальная, ультрапарадоксальная и наркотическая фазы). В наркотическую фазу животные перестают отвечать условно-рефлекторной реакцией на любые условные раздражители. Сон сопровождается рядом характерных изменений вегетативных показателей и биоэлектрической активности мозга.

Для состояния бодрствования характерной является низкоамплитудная высокочастотная ЭЭГ активность (бета-ритм). При закрывании глаз эта активность сменяется альфа-ритмом, происходит засыпание человека. В этот период пробуждение происходит достаточно легко. Через некоторое время начинают возникать «веретена». Примерно через 30 мин стадия «веретен» сменяется стадией высокоамплитудных медленных тета-волн. Пробуждение в эту стадию затруднено, она сопровождается рядом изменений вегетативных показателей: уменьшается частота сердечных сокращений, снижается кровяное давление, температура тела и др.

Стадия тета-волн сменяется стадией высокоамплитудных сверхмедленных дельта-волн. Дельта-сон – это период глубокого сна. Частота сердечных сокращений, артериальное давление, температура тела в эту фазу достигают минимальных значений. Медленно волновая стадия сна длится 1–1,5 часа и сменяется появлением на ЭЭГ низкоамплитудной высокочастотной активности, характерной для состояния бодрствования (бета-ритм), которая получила название парадоксального, или быстро волнового, сна. Таким образом, весь период сна делится на два состояния, которые сменяют друг друга 6–7 раз в течение ночи: медленно волновой (ортодоксальный) сон и быстро-волновой (парадоксальный) сон. Если разбудить человека в фазу парадоксального сна, то он сообщает о сновидениях. Человек, проснувшись в фазу медленного сна, обычно не помнит сновидений. Если человека во время сна избирательно лишать только парадоксальной фазы сна, например, будить его, как только он переходит в эту фазу, то это приводит к существенным нарушениям психической деятельности.


Литература

1. Вейгн А.М., Хехт К. Сон человека. Физиология и патология: Пер. с англ. – М.: Мир, 1989. – 150 с.

2. Борбели А., Тайна сна. – М.: Знание, 1989. – 192 с.

3. Шмидт Р., Тевс Г. Физиология человека: Пер. с англ. – М.: Мир, 1996. – Т. 2. – 313 с.

4. Цыган В.Н., Богословский М.М., Апчел В.Я., Князькин И.В. Физиология и патология сна. – М.: СпецЛит, 2006. – 166 с.

5. Куприянович Л.И. Биологические ритмы и сон. – М.: Наука, 1976. – 66 с.

ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ

ДОБАВИТЬ КОММЕНТАРИЙ [можно без регистрации]

Ваше имя:

Комментарий