Смекни!
smekni.com

Биомеханика дорожно-транспортных происшествий (ДТП) (стр. 1 из 3)

Содержание

Введение

Понятие о биомеханике ДТП, этапы её развития

Роль и задачи по исследованию механизмов травмирования водителей, пассажиров и пешеходов при ДТП в повышении БДД

Заключение

Список использованной литературы


Введение

Актуальность проблемы. Экспертиза характера и механизма возникновения повреждений при автомобильной травме является актуальной и сложной проблемой судебной медицины и экспертной практики. Эта проблема приобретает особую актуальность в настоящее время в связи с резким увеличением количества автомобилей, изменением их конструктивных особенностей и возрастающим количеством случаев дорожно-транспортных происшествий с человеческими жертвами.


Этапы развития биомеханики

Возникновение биомеханики как науки

Рисунок из книги Дж. Борелли De motu animalium Система рычагов, схема прикрепления мышц при сгибании в суставе и при разгибании. Скелетно-мышечная схема двух человек, по-разному удерживающих различный груз.

Основателем науки биомеханики по праву считается Джованни Борелли, итальянский натуралист. Профессор университетов в Мессине (1649) и Пизе (1656). Помимо работ в области физики, астрономии и физиологии, он разрабатывал вопросы анатомии и физиологии с позиций математики и механики. Он показал, что движение конечностей и частей тела у человека и животных при поднятии тяжестей, ходьбе, беге, плавании можно объяснить принципами механики, впервые истолковал движение сердца как мышечное сокращение, изучая механику движения грудной клетки, установил пассивность расширения лёгких.

Наиболее известный труд ученого «Движение животных» («Dе Motu Animalium»). Его учение основано на твердых биомеханических принципах, в своей работе он описал принципы мускульного сокращения и впервые представил математические схемы движения. Он впервые использует биомеханическую модель для объяснения движения в биомеханической системе.

Новым толчком развития биомеханики был связан с изобретение метода кинофотосъемки движения человека. Французский физиолог, изобретатель и фотограф. Этьенн Марей(1830—1904) впервые применил кинофотосъемку для изучения движений человека. Так же впервые им был применен метод нанесения маркеров на тело человека — протопип будущей циклографии. Важной вехой в истории биомеханики явились исполненные Э. Майбриджем (1830—1904)(США) циклы фотографий, снятых несколькими камерами с разных точек зрения. Серия фотографий («Галопирующая лошадь», 1887), показала необычайную красоту пластики реальных движений. С тех пор кинофотосъемка применяется для анализа движений как один из основных методов биомеханики. Начало анализа движения человека было положено братьями Вебер (1836) в Германии. Первый трехмерный математический анализ человеческой походки проведен Вильгельмом Брауном и его студентом Отто Фишером в 1891 году. Методология анализа ходьбы не изменилась по сегодняшний день. Кроме того, Браун и Фишер впервые изучили массу, объём и центр масс человеческого тела, (проведя исследования на трупах), и получили данные, которые длительно использовали как биомеханический стандарт. Ими был также предложен метод определения массы сегментов тела и его объёма, используя погружение частей тела в воду. Так были получены данные возрастных изменений центров масс. Исследования Брауна и Фишера положили начало новой эпохи биомеханики — биомеханики ходьбы, а период со второй половины XIX столетия стали называть столетием ходьбы.

Современный этап развития биомеханики

Создателем теоретической основы современной биомеханики — учения о двигательной деятельности человека и животных можно по праву считать Николая Александровича Бернштейна (1896—1966)

Созданная Бернштейном теория многоуровневого управления движениями, в том числе локомоциями человека, положила начало развитию новых принципов понимания жизнедеятельности организма. Поставив в центр внимания проблему активности организма по отношению к среде, Бернштейн объединил биомеханику и нейрофизиологию в единую науку физиологию движений. Понятие Н.А. Бернштейна о двигательной задаче как психической основе действий человека открыло пути изучения высших уровней сознания в двигательной деятельности человека. Подверглись подробной разработке вопросы формирования, строения и решения двигательной задачи. Эти вопросы стали рассматриваться в тесной связи со строением двигательного состава действия как системы движений. Ряд работ Бернштейна посвящён изучению динамики мышечных сил и иннервационной структуры двигательных актов. Он внёс коренные усовершенствования в технику регистрации и анализа движений (кимоциклограмма, циклограмметрия). Некоторые идеи, высказанные Бернштейном в 30-х гг., предвосхитили основные положения кибернетики. Бернштейну принадлежит одна из первых чётких формулировок понятия обратной связи в физиологии, а также идея поуровневой организации движений. В связи с недостаточностью понятия «рефлекторной дуги» для объяснения двигательных актов Бернштейн ввёл понятие «рефлекторного кольца», основанное на трактовке всей системы отношений организма со средой как непрерывного циклического процесса.

В 1926 г. Н.А. Бернштейном на основе исследований в биомеханической лаборатории Центрального института труда было издано «Общая биомеханика» как первая часть «Основ учения о движениях человека». Важно отметить, что в учебнике «Физиология человека», изданном в 1946 г. (под ред. М.Е. Маршака), уже полностью представлено учение Н.А. Бернштейна о координации движений, без которого невозможно и представить современную биомеханику


Роль и задачи по исследованию механизмов травмирования водителей, пассажиров и пешеходов при ДТП в повышении безопасности дорожного движения.

Целью исследований биомеханики движений человека при ДТП является качественный и количественный системный биомеханический анализ и синтез движений (перемещений) человека и переносимости его телом импульсных перегрузок, которые проводятся для взаимного согласования физических возможностей чело века и современных технических устройств в условиях их взаимодействия при ДТП. Для проведения системного качественного и количественного анализа комплексно изучают биомеханику движений человека при ДТП: движения или перемещения без учета (с учетом) действующих нагрузок; способность организма человека переносить возникающие в условиях ДТП перегрузки.

Принимая во внимание системный подход к исследованиям пассивной безопасности и классификацию ДТП, биомеханика движений человека при ДТП (биокинематика и биодинамика ДТП) изучается дифференцированно по типам (видам) ДТП, типам авто транспортных средств и местоположению человека в автомобиле. При изучении общей биомеханики основными являются экспериментальные методы исследования. Для исследования биокинематики и биодинамики основных типов (видов) ДТП применяются экспериментальные методы полной и частичной имитации ДТП с использованием современной теории и методов общей биомеханики. За базовые характеристики при проведении биомеханических исследований ДТП следует принимать антропометрические характеристики человека; положение человека в автомобиле; геометрические параметры салона автомобиля.

Исследования механизмов травмирования человека в автомобиле и биомеханики движения человека при ДТП при массовых полигонных испытаниях и изучении реальных ДТП позволили определить выходные характеристики системы обеспечения пассив ной безопасности.

Биомеханика движений человека в автомобиле в условиях столкновений определяется следующими параметрами: типом и характеристикой удерживающего средства, ударно-прочностными свойствами автомобиля в зоне его контакта с объектом соударения и скоростью (изменением скорости) движения автомобиля в момент столкновения

Особенности ранения людей в дорожно-транспортных происшествиях

Ранения, получаемые в ДТП, совершенно не похожи на ранения от других источников повреждений, и кроме того, в этих ранениях более или менее явно проявляется характер их нанесения (переезд, сжатие, столкновение) и особенности самих автомобилей. Ведь автомобили по конструкции и форме представляют собой довольно крупные и чрезвычайно сложные агрегаты, наделенные как широкими и плоскими элементами, так и узкими, острыми и твердыми деталями. К тому же автомобили обычно движутся с высокой скоростью. Но травмы людям наносят не только сами автомобили. Часто источниками травмирования являются элементы дороги. Ранения, полученные таким путем, как правило, разнообразны, сложны и характеризуются многочисленными разрывами мышечных тканей. В последние годы проводятся исследования, направленные на изучение связей между этими столь разнообразными ранениями и формой или конструкцией автомобиля. Появилось немало публикаций, в которых раскрываются особенности ранений, полученных в автодорожных происшествиях. Чрезвычайно специфичны раны пешеходов, сбитых автомобилями, поскольку внешние конструктивные элементы последних примерно одинаковы. Самую непосредственную связь с формой ран имеют такие элементы автомобиля, как бамперы, крылья, капот, наружные зеркала заднего вида, ветровое стекло, указатели поворотов (выполненные в форме различных стрелок) и другие элементы и детали конструкции автомобиля, расположенные снаружи и выступающие за габариты.

Ранения от бамперов. Среди ран, полученных при ударах, особенно специфичны те, которые причиняют бамперы автомобилей. Передний бампер - это деталь, которая первой приходит в соприкосновение при столкновении или наезде. Бампер располагается достаточно низко и потому при наездах на пешеходов травмирует им ноги. Бамперы грузовых автомобилей и автобусов, как правило, ударяют человека среднего роста по бедру, бамперы легковых автомобилей среднего класса травмируют верхнюю часть голени человека, а мало- и микролитражки - ее нижнюю часть. В результате ударов бамперов автомобилей могут быть контузии и ушибы. Однако бывают случаи, когда снаружи у пострадавшего нет никаких повреждений, но произошло внутреннее кровоизлияние в мышцы, прилегающие к кости, и их разрушение. Во всех случаях, когда травму наносит автомобиль, движущийся со скоростью более 50 км/ч, результатом будут различные переломы костей. Чаще всего переломы получаются из-за наезда на пешехода спереди и сбоку, реже при наездах сзади, ибо в последнем случае мышцы и коленные суставы выполняют функции компенсаторов.