Смекни!
smekni.com

К анатомии и физиологии канально-меридианальной системы человека (стр. 1 из 2)

К анатомии и физиологии канально-меридианальнойn системы человека

К.Б. Петров, Д.м.н., профессор, зав. Кафедрой лечебной физкультуры, физиотерапии и курортологии Новокузнецкого ГИДУВа, г. Новокузнецк.

Одним из главных положений древневосточной медицины является понятие о канально-меридианальной системе. Считается, что каналы тела человека состоят из двух неравнозначных частей - наружного и внутреннего ходов, непосредственно связанных между собой и составляющих единое целое [27]. В наших предыдущих работах [18, 19, 20, 21], посвященных изучению анатомических субстратов данного феномена, впервые была высказана мысль, согласно которой внешнюю часть каждого меридиана можно представить в виде последовательной цепочки мышц, имеющих общие пункты прикрепления на скелете и функционально объединенных в миотатические синкинезии. Эти мышечные цепи (мышечно-сухожильные меридианы) посредством фиброзных мембран (фасций, апоневрозов, капсул внутренних органов и т.д.) контактируют с внутренними органами, образуя единую сеть миовисцерофасциальных связей, охватывающих практически весь организм и принимающих участие в регуляции его функций (рис. 1). За прошедшие годы накопилось много новых фактов и суждений, подтверждающих данную концепцию, что и послужило предпосылкой для данной публикации.

Цепные миотатические синкинезии. В 1905 г.Икскюль показал, что если основание изолированного луча морской звезды (офиуры) закрепить горизонтально в штативе, так чтобы его конец свободно свисал, изогнувшись вниз, и наносить на него раздражение, то луч будет отклоняться в сторону растянутых мышц. Известно, что луч офиуры состоит из отдельных позвонков, соединенных мышцами. Принцип данной двигательной реакции заключается в том, что при сокращении одних мышц происходит растяжение других. Подобный механизм координации описан также и у низших червей - немартин [1]. При раздражении переднего конца червя сначала сокращаются продольные мышцы головного отдела; затем постепенно, переходя от участка - к участку, волна сокращения достигает противоположного конца. Сокращение предыдущего участка ведет к растяжению ближайшего последующего сегмента тела. В растянутом сегменте раздражаются кожно-мышечные рецепторы, инициируя его сокращение.

Цепные координации поперечно-полосатой мускулатуры обнаружены и у млекопитающих. Их существование было наглядно продеманстрировано Р. Магнусом [12] на хвосте децеребрированной, а затем спинализированной кошки. Животное укладывали вниз лапами на стол, чтобы хвост свободно свисал через его край. При раздражении кончика хвоста он всегда отклонялся вверх - в сторону растянутых мышц. После того как переднюю часть туловища кошки перемещали в боковое положение, реакция хвоста менялась - теперь при раздра- жении он двигался в сторону направления передних лап животного. Перерезка спинного мозга нарушила связи передней части туловища с двигательными центрами хвоста, однако поворот тела вызывает асимметричное растяжение мышц с обоих сторон хвоста. Этого достаточно чтобы изменилось направление рефлекса.

Взглянув в учебник анатомии, легко убедиться в том, что многие весьма крупные массивы скелетных мышц человека имеют одинаково направленную исчерченность рельефа. Нередко одна мышца как бы является продолжением другой. Например, волокна наружной косой мышцы живота, сохраняя преемственность по направлению, продолжаются через белую линию в волокна внутренней косой мышцы, а те, в свою очередь, плавно переходят в пучки брюшной части большой грудной и передней зубчатой мышцы. Последняя аналогичным образом связана с подлопаточной и ромбовидными мышцами. В качестве другого примера можно привести цепочку, состоящую из выпрямителя позвоночника, нижней части трапециевидной и дельтовидной мышцы. Сходство внутренней архитектуры весьма удаленных друг от друга мышц, имеющих различную иннервацию, может быть объяснено единством их функции на более ранних этапах эволюции. Возможно некоторые из этих закономерностей отражают спиралевидно-волновой стереотип движений, используемый червями, рыбами или змеями для перемещения в пространстве. Очевидно, что у человека эти древние связи могут служить анатомическим субстратом для распространения мышечно-тонических и некоторых других реакций из очага первичной ирритации посредством цепных миотатических синкинезий.

По данным И.С. Беритова [1], миотатический рефлекс развивается как при быстром, так и при медленном растяжении мышцы и сохраняется все то время пока действует растягивающая сила. Он может появляться при растяжении мышцы всего на 0.8 % ее длины покоя. Можно предположить, что любой локальный спазм мышечных пучков, инициируемый первичным патологическим процессом, вызывает растяжение ее ближайших соседей по мышечной цепи, способствуя активации миотатического рефлекса и повышению тонуса в последних. Таким образом, развивается цепная реакция, приводящая к последовательной тонизации всех мышц данной цепи, даже если они весьма удалены от очага первичного поражения. Сравнительно подвижные детали скелета (лопатка, ребра, тазовая кость, надколенник, отдельные позвонки) могут включаться в мышечную цепь как пассивные костные вставки, существенно не препятствуя распространению мышечно-тонических реакций.

Клинико-экспериментальным обоснованием существованиямиотатических синкинезий у человека могут послужить работы Т.Н.Несмеяновой [16] и А.Н.

Транквиллитати [28]. У больных с сохранной ЦНС похожие закономерности мышечных координаций на уровне перераспределения тонуса были подмечены Н.Н. Сак и Л.А. Кадыровай [24, 25, 8].

2. Миовисцерофасциальные связи. Начинаясь отсоединительнотканных перегородок подкожно-жировой клетчатки, фасции переходят на мышечные группы, мышцы и даже разветвляются на отдельные мышечные волокна; они распространяются на оболочки, покрывающие внутренние органы (плевра, брюшина), оплетают нервы, проникают в череп и спинномозговой канал, покрывая спинной и головной мозг. Таким образом, с помощью фиброзных мембран (фасций) внутренние органы связаны между собой и со скелетными мышцами. Механическую основу рассматриваемых соединительнотканных образований составляют коллагеновые волокна. Благодаря волнообразной извитости образующих его нитей, коллаген обладает некоторой эластичностью. В зависимости от физико-химического состава окружающей межклеточной жидкости степень набухания, а следовательно и длина фиброзных волокон может меняться в пределах 30 % [3].

Головной мозг и другие внутренние органы под влиянием биохимических процессов метаболизма и гемодинамического фактора способны к медленным пульсирующим сокращениям [7, 30, 15, 31]. Считается, что для каждого внутреннего органа в норме имеется собственный ритм и стереотип пульсации [30].

Таким образом, с помощью фиброзных мембран внутренние органы оказываются "привязанными" к мышцам опорно-двигательного аппарата. Как отмечалось выше, любое внешнее воздействие на мышечное волокно, способствующее его растяжению (практически независимо от силы и скорости), что инициирует миотатический рефлекс. Следовательно, пульсация внутренних органов или изменение длины коллагеновых структур вследствие их набухания способны оказать влияние на тонус скелетной мускулатуры. Наличие тесных висцерально-мышечных (висцеро-моторных) и еще более тесных мышечно-висцеральных (моторно-висцеральных) связей было убедительно доказано физиологической школой М.Р. Магендовича [11], хотя они и объяснялись исключительно с позиции нейровегетативных рефлексов.

3. Патогенетическая неоднородность висцеросоматических проявлений. Хорошо известно, что патология органов грудной и брюшной полости практически всегда связана с болезненными изменениями со стороны кожи, подкожной клетчатки или мышц [4, 10]. Эти проявления могут носить местный характер и соответствовать проекции того или иного висцерального органа или же выявляться на значительном отдалении от него. Первая категория симптомов особенно хорошо изучена европейской медициной и давно используется для клинической диагностики [29]. Их происхождение вполне удовлетворительно объясняется сегментарно рефлекторными связями между пораженным внутренним органом и покровными тканями. С этой точки зрения нет ничего удивительного в напряжении мышц брюшной стенки при острой патологии абдоминальных органов (симптом "острого живота"), в загрудинном характере стенокордитических болей или альгических проявлениях в области правого подреберья у больных холециститом.

Вторая категория симптомов носит название отраженных или реперкуссионных [13]. В отличие от предыдущей группы, их происхождение далеко не столь очевидно, так как они не подчиняются законам сегментарно-метамерной иннервации. Эти симптомы гораздо менее специфичны. Характерно, что патологические изменения при заболевании органов грудной клетки и верхнего этажа брюшной полости проявляется в области шеи, ключицы, правой или левой руки (в зависимости от стороны локализации органа), в межлопаточном и подлопаточном пространстве. При заболеваниях среднего или нижнего этажа брюшной полости и органов малого таза они обнаруживаются на животе и в поясничном отделе, а при патологии гениталий - в области паха и на внутренней поверхности бедер [4]. Описаны и более редкие случаи, когда, например, приступы печеночных колик сопровождались болями в области лица [13, 14].

Обращает на себя внимание тот факт, что болезненность мягких тканей в надключичной ямке (точка Мюсси или френикус - симптом старых авторов) наблюдается не только при заболеваниях легких (там располагается их верхушка), но также при кардиогенной и гепато-билиарной патологии [29, 6]. Происхождение такой "атипичной" симптоматики обычно объясняется тем, что функция органов грудной и брюшной полости отражается не только при посредстве соседних или близлежащих сегментов, но и при посредстве надсегментарных механизмов [11]. Кроме того учитывается, что в процессе эмбриогенеза внутренние органы получают иннервацию в месте своей первичной закладки, а затем смещаются, порой на значительные расстояния, за ними следуют и нервы [22].