регистрация / вход

Интегральные преобразования

Операционное исчисление и некоторые его приложения Пусть задана функция действительного переменного t, которая удовлетворяет условиям : Функция f(t) кусочно-непрерывная (имеет конечное число точек разрыва первого рода).

Операционное исчисление и некоторые его приложения

Пусть задана функция действительного переменного t, которая удовлетворяет условиям :

1)

2) Функция f(t) кусочно-непрерывная (имеет конечное число точек разрыва первого рода).

3) Для любого значения параметра t>0 существует M>0 и S0³0 такие, что выполняется условие : |f(t)|<MeS 0 t

Рассмотрим функцию f(t)×e- pt , где р – комплексное число р = ( а + i b).

(1)

Применим к этому соотношению формулу Эйлера :

Проинтегрировав это равенство получим :

(2)

Оценим левую часть равенства (2) :

А согласно свойству (3) |f(t)| < MeS 0 t

В случае если a>S0 имеем :

Аналогично можно доказать, что существует и сходится второй интеграл в равенстве (2).

Таким образом при a>S0 интеграл, стоящий в левой части равенства (2) также существует и сходится. Этот интеграл определяет собой функцию от комплексного параметра р :

(3)

Функция F(p) называется изображением функции f(t) по Лапласу, а функция f(t) по отношению к F(p) называется оригиналом.

f(t) ÜF(p), где F(p) – изображение функции f(t) по Лапласу.

- это оператор Лапласа.

Смысл введения интегральных преобразований.

Этот смысл состоит в следующем : с помощью перехода в область изображения удается упростить решение многих задач, в частности свести задачу решения многих задач дифференциального, интегрального и интегро-дифференциального уравнения к решению алгебраических уравнений.

Теорема единственности : если две функции j(t) и Y(t) имеют одно и то же изображение F(p), то эти функции тождественно равны.

Смысл теоремы : если при решении задачи мы определим изображение искомой функции, а затем по изображению нашли оригинал, то на основании теоремы единственности можно утверждать, что найденная функция является решением в области оригинала и причем единственным.

Изображение функций s 0 ( t ), sin ( t ), cos ( t ).

Определение: называется единичной функцией.

Единичная функция удовлетворяет требованиям, которые должны быть наложены на функцию для существования изображения по Лапласу. Найдем это изображение :

Изображение единичной функции

Рассуждая аналогичным образом получим изображение для функции sin(t) :

интегрируя по частям получим :

т.е.

Аналогично можно доказать, что cos (t) переходит в функцию в области преобразований. Откуда :

Изображение функции с измененным масштабом независимого переменного.

где а – константа.

Таким образом :

и

Свойства линейности изображения.

Теорема : изображение суммы нескольких функций умноженное на постоянные равны сумме изображений этих функций умноженных на те же постоянные.

Если , то , где

Теорема смещения : если функция F(p) это изображение f(t), то F(a+p) является изображением функции e- a t f(t) (4)

Доказательство :

Применим оператор Лапласа к левой части равенства (4)

Что и требовалось доказать.

Таблица основных изображений:

F(p) f(t) F(p) f(p)
1

Изображение производных.

Теорема. Если , то справедливо выражение :

(1)

Доказательство :

(2)

(3)

Подставляя (3) в (2) и учитывая третье условие существования функции Лапласа имеем :

Что и требовалось доказать.

Пример : Решить дифференциальное уравнение :

Если x (0)=0 и x ’(0)=0

Предположим, что x (t) – решение в области оригиналов и , где - решение в области изображений.

Изображающее уравнение :

Теорема о интегрировании оригинала . Пусть находится в области оригиналов, , тогда также оригинал, а его изображение .

Таким образом операции интегрирования в области оригиналов соответствует операция деления в области изображений.

Теорема о интегрировании изображений : Пусть – функция оригинал, которая имеет изображение и также оригинал, а - является сходящимся интегралом, тогда .

Толкование теоремы : операция деления на аргумент в области оригиналов соответствует операции интегрирования в пределах от р до ¥ в области изображений.

Понятие о свертке функций. Теорема о свертке.

Пусть заданы две функции a(t) и b(t), удовлетворяющие условиям существования изображения по Лапласу, тогда сверткой таких функций называется следующая функция :

(1)

Свертка обозначается следующим образом :

(1’)

Равенства (1) и (1’) идентичны.

Свертка функции подчиняется переместительному закону.

Доказательство:

Теорема о умножении изображений . Пусть и , тогда произведение изображений представляется сверткой оригиналов .

Доказательство :

Пусть изображение свертки

(1)

Интеграл (1) представляет собой повторный интеграл относительно переменных t и t . Изменим порядок интегрирования. Переменные t и t входят в выражение симметрично. Замена переменной производится эквивалентно.

Если в последнем интеграле сделать замену переменной, то после преобразований последний интеграл преобразуется в функцию F2 (p).

Операция умножения двух функций в пространстве изображений соответствует операции свертки их оригиналов в области оригиналов. Обобщением теоремы о свертке есть теорема Эфроса.

Теорема Эфроса . Пусть функция находится в области оригиналов, , а Ф (р) и q (р) – аналитические функции в области изображений, такие, что , тогда .

В практических вычислениях важную роль играет следствие из теоремы о свертке, наз. интеграл Дюамеля. Пусть все условия теоремы выполняются, тогда

(2)

Соотношение (2) применяется при решении дифференциальных уравнений.

Обратное преобразование Лапласа.

- Это прямое преобразование Лапласа.

Обратное преобразование есть возможность получить функцию-оригинал через известную функцию-изображение :

,где s – некоторая константа.

Пользоваться формулой для обратного преобразования можно при определенном виде функции F(p), либо для численного нахождения функции-оригинала по известному изображению.

Теоремы разложения.

Известная методика разложения дробно-рациональных функций на сумму элементарных дробей (1)-(4) может быть представлена в виде двух теорем разложения.

Первая теорема разложения . Пусть F(p) – изображение некоторой функции, тогда эта функция представляется в виде , k – постоянная, может быть сколь угодно большим числом, , то возможен почленный переход в пространство оригиналов с помощью формулы : .

Вторая теорема разложения . Если изображение представляется дробно-рациональной функцией . Степень числа s меньше степени знаменателя n, знаменатель имеет корни a1 , a2 , …, an соответствующий кратности k1 , k2 , …, kn , при этом k1 + k2 +…+ kn = n. В этом случае оригинал функции определяется по формуле :

(3)

Например :

Связь между преобразованиями Фурье и Лапласа.

Преобразование Лапласа имеет вид :

(1)

На f ( t ) наложены условия :

1) f ( t ) определена и непрерывна на всем интервале: (-¥ ; ¥ )

2) f ( t ) º 0 , tÎ (- ¥ ;0)

3) При M, S0 >0 , для всех t > 0 выполняется условие |f(t)|<MeS 0 t

Если отказаться от условий 2 и 3, и считать, что f ( t ) принимает произвольное значение при t < 0, то вместо (1) можно рассмотреть следующий интеграл :

(2)

Формула (2) – двустороннее преобразование Лапласа.

Пусть в (1) и (2) p = a + in , где a и n – действительные числа.

Предположим, что Re( p ) = a = 0, т.е.

(4)

(5)

(4) и (5) соответственно односторонние и двусторонние преобразования Фурье.

Для существования преобразования Фурье, функция должна удовлетворять условиям :

1) Должна быть определена на промежутке (-¥ ; ¥ ) , непрерывна всюду, за исключением конечного числа точек разрыва первого рода.

2) Любой конечный промежуток оси t можно разделить на конечное число промежутков, в каждом из которых функция либо кусочно-гладкая, либо кусочно-монотонная.

3) Функция абсолютно интегрируема : , это условие выполняется, если |f(t)|<MeS 0 t

Из существования преобразования Лапласа не следует преобразование Фурье. Преобразования Фурье существуют для более узкого класса функций. Преобразования Фурье не существуют для постоянной и ограниченной функции : f ( t ) = C

Аналогично преобразования Фурье не существуют и для гармоничных функций :

т.к.

Если f ( t ) = 0 при t >0 и преобразование для этой функции существует, то оно может быть получено из таблицы оригиналов и изображений для преобразования Лапласа путем замены параметра t на iu, но при этом необходимо убедиться, что F ( p ) не обращается в число справа от мнимой оси.

Если f(t) ¹ 0, t<0

(6)

Обозначим

Очевидно, что (6’)

Функция (6) называется спектральной плотностью

В связи с изложенным можно указать два пути отыскания спектральной плотности :

1) Вычисление интеграла (5)

2) Использование преобразования Лапласа или Фурье.

Непосредственное вычисление спектральной плотности для абсолютно интегрируемой функции.

Функция F ( iu ) может быть представлена, как комплексная функция действительной переменной

(7)

|F ( iu )| - амплитудное значение спектральной плотности, y (u) – фазовый угол.

В алгебраической форме : F ( iu ) = a ( u ) + ib ( u )

(8)

(9)

Для непосредственного вычисления спектральной плотности вычисляется интеграл (6), а затем по формулам (8) и (9) определяется амплитудное значение |F ( iu )| и фазовый угол y (u).

Пример.

Найти спектральную плотность импульса :

откуда , далее

Отыскание спектральной плотности для неабсолютно интегрируемых функций.

Прямое преобразование Фурье для таких функций не существует, существует преобразование Лагранжа.

Прямое преобразование Фурье необходимо :

1) Для облегчения процесса решения дифференциальных и интегральных уравнений.

2) Для исследования амплитудной и частотной характеристик спектральной плотности, определенной всюду на числовой оси.

Введем следующее определение спектральной плотности для неабсолютно интегрируемых функций:

Если для заданной функции y = f ( t ) существует непрерывное изображение по Лапласу F ( p ), то спектральной плотностью функции называется изображение функции по Лапласу при p = iu .

Спектральной плотностью F 1 ( iu ) неабсолютно интегрируемой функции называется предел от спектральной плотности F 2 ( iu a ) абсолютно интегрируемой функции.

ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ

ДОБАВИТЬ КОММЕНТАРИЙ  [можно без регистрации]

Ваше имя:

Комментарий