Смекни!
smekni.com

Анализ и экономическая оценка технологий в цветной металлургии (стр. 3 из 3)

В зависимости от емкости печи электроды применяют различных диаметров. Графитовые электроды по сравнению с угольными имеют более высокую прочность и меньшее сопротивление электрическому току. На основании практических данных установлено, что с увеличе­нием емкости печи расход электроэнергии уменьшается и составляет от 600 до
1000 квт-ч на 1 т стали. Расход электродов зависит также от Л характера перерабатываемой шихты. При работе на твердой шихте на 1 т стали расходуется 12—18 кг угольных электродов и от 5 до 8 кг графитовых; при работе на жидкой шихте расход их сокращается примерно в три раза.
Рис.3 Электродуговая печь: 1- кожух, 2-днище, 3-под, 4-свод, 5-электроды Длительность процесса плавки увеличивается с повышением ем­кости печи и составляет при переработке жидкой шихты 1,5—4 ч и 4—8 ч

— твердой шихты.

Угар металла составляет 1—3% при работе на жидкой шихте и 5—8% на твердой.

Число плавок в сутки достигает 3—4 при твердой и 6—8 при жидкойшихте.

Электрические дуговые печи емкостью свыше 10 m обычно используют на металлургических заводах, а печи с меньшей емкостью — в сталелитейных цехах для получения фасонных стальных отливок.

Составляющими шихты при плавке стали в электрических печахявляются стальной лом, чугун, железная руда, флюсы, раскислителии ферросплавы, которые используют для введения легирующих добавок в сталь.

Плавку стали ведут основным и кислым процессами. Для плавки стали основным процессом под и стены печи футеруют основными ма­териалами (магнезитовым кирпичом), а для плавки кислым процес­сом — кислыми материалами (динасовым кирпичом).

10. Технология выплавки стали в Мартеновской сети.

Плавка стали в основных мартеновских печах рудным процессом

Плавку стали в мартеновских печах ведут рудным процессом на таких металлургических заводах, которые в своем составе имеют до­менные печи, но не имеют прокатно-кузнечного производства.

При рудном процессе на сталь перерабатывают жидкий чугун, по­лучаемый в доменных печах. Для ускорения окисления примесей чугу­на в завалку добавляют чистую железную руду в

образующихся окислов загружают известняк. Рудный процесс плавки стали отличается от скраппроцесса тем, что не требуется затрат тепла и времени на расплавление металла и процессы окисления.

11. Технологии выплавки стали в конверторе.

Для заливки жидкого чугуна конвертор поворачивают из верти­кального положения в горизонтальное. После заливки чугуна пуска­ют дутье и конвертор поворачивают днищем вниз. Слой металла со­ставляет от 1/5 до 1/3 высоты цилиндрической части конвертора. Ем­кость современных конверторов, работающих на воздушном дутье” достигает до 40 т.

В конверторах применяют кислую и основную футеровки. Тепло,необходимое для нагрева жидкой стали до высоких температур, в этих процессах получается за счет химических реакций окисления приме­сей чугуна.

При этом примеси могут окисляться элементарным кислородом и кислородом закиси железа, которая растворяется в металле. При окис­лении примесей кислородом выделяется значительное количество теп­ла.

При окислении элементов наибольшее количество тепла выделяют кремний, фосфор и марганец. Эти элементы используются при продув­ке чугуна как источник тепла (кремний в кислом, а фосфор в основном конверторе). Недостаточное количество тепла от реакций компенси­руется температурой жидкого чугуна.

Для получения стали методом продувки применяют два сорта чугунов: марки Б1 и Б2 — для кислого и Т1 —для основного про­цессов.

Чугун марки Б1 и Б2 содержит минимальное количество фосфо­ра (0,07%) и серы (0,06%), чугун марки Т1 содержит фосфора 1,6—2,0%, а иногда до 2,5%.

В последнее время для продувки чугуна вместо воздуха применяют технический кислород, который позволяет повысить скорость плавки, выход годной стали за счет увеличения добавки твердой шихты и уменьшения химических примесей в чугуне, подвергающихся окис­лению.

Конвертор, работающий на кислородном дутье, по конструкции отличается от обычных тем, что имеет сплошное днище и кислороде него во время процесса плавки подается сверху, так как подача кис­лорода через донные фурмы приводит к быстрому их разрушению.

12. Технологии выплавки стали в Электрической печи

Основной процесс плавки стали

Плавку стали основным процессом ведут с полным и частичным

окислением и без окисления примесей.

Плавку с полным окислением примесей проводят в тех случаях, когда необходимо переработать шихтовые материалы с повышенным содержанием фосфора и серы и получить сталь с минимальным количеством этих элементов. После расплавления шихты в печь добавляют руду. Окислы железа

руды окисляют имеющиеся в металле примеси Si, Mn,.P и С, в результа те чего образуется железистый шлак с содержанием (FeO)s -P206, способствующий удалению фосфора из металла. Для образования более прочного соединения ангидрида фосфора в шлак добавляют све­жеобожженную известь для получения фосфорно-кальциевой соли в составе шлака по реакции:

(FeO)3 • Р20б + 4СаО -* (СаО)4 . Р2О5 + 3FeO + О.

Эта реакция протекает успешно, так как металл не нагрет до вы-I сокой температуры. В этот период обычно наблюдается кипение ванны f за счет частичного окисления углерода и образования газа. Полученный шлак с наличием фосфора сливают.

При выплавке высокоуглеродистой стали и в тех случаях, когда содержание углерода в окислительный период уменьшается в металле ниже заданных пределов, после удаления шлака ванну науглерожи­вают. Для науглероживания металла в печь загружают электродный бой, кокс, а в остальных случаях чушковый чугун с малым содержа­нием вредных примесей — фосфора и серы. При этом загрузочное окно плотно закрывают во избежание поступления кислорода воздуха из атмосферы в пространство печи. После окончания науглерожива­ния наводят новый шлак. Для образования шлака в печь загружают флюсующую смесь в количестве до 4% от веса металла, состоящую из 80% свежеобожженной извести и 20% плавикового шпата.

Во вновь образовавшемся шлаке обычно в начальный период со­держание окислов в виде закиси железа FeO и закиси марганца МпО составляет 5 — 8%. Для уменьшения содержания этих окислов в шлак добавляют раскисл ительную смесь, состоящую из извести, молотого ферросилиция и кокса. Под действием раскислительной смеси в шла­ке уменьшается содержание FeO до 1,0% и Мп до 0,4%. Шлак такого состава является активным десульфуратором металла. Обработка ме­талла раскисл ительным шлаком также обеспечивает раскисление ме­талла. Такой металл доводят до заданного состава, в него вводят не­обходимые добавки, а при необходимости и легирующие элементы. V Окончательное раскисление стали производят алюминием. Такой про­цесс называется плавкой под белым шлаком.

13. Суть агломерации права (назначение агломерации, сырьё, процесс агломерации, оборудование).

Железная руда на 60-90% является минералом, остальное – пустая порода. Рудный материал состоит из оксидов и карбонатов магния.

Перед загрузкой шихты в Д.П. в рудных материалах повышают содержание Fe, т.е. железную руду подвергают обработке: дроблению, обогащению, усреднению, использование мелких фракций, агломерации (термической обработке при t0 1200-1900). При агломерации удаляется 90% S и Fe2O3 переходит в Fe3O4.

Агломерационная шихта включает: рудную часть (5-6 мм), топливо (кокс) – 3 мм, флюс (добавка известняка – 3 мм), уголь (3-6%).

Процесс агломерации происходит в агломерационных машинах, в которых основной узел – агломерац. горн.

Список использованной литературы

1. Баринов Н.А. Технология металлов. Металлургиздат.1963

2. Сидоров И.А. Основы технологии важнейших отраслей промышленности, Москва, “высшая школа”, 1971

3. Кован В.М. (и др.) Основы технологии машиностроения “Машиностроение”, 1965

4. Никифоров В.М. (и др.) Технология важнейших отраслей промышленности, ч.1, изд. ВПШ при ЦК КПСС, 1959

5. Данилевский В.В. Технология машиностроения.

“Высшая школа”, 1965

Если Вам пригодился мой реферат, сообщите мне об этом, буду Вам очень признателен!

My E-mail:talk2000@mail.ru