Смекни!
smekni.com

Контроль качества сгорания топлива в методических нагревательных печах (стр. 12 из 20)

Рис. 14. Схема термомагнитного газоана­лизатора с О-образной камерой: / — резистор; 1 — магнитные наконечники; 3 — термоанемометр; 4 — измерительная ка­мера; 5 — нагреватель; 6 — измерительный прибор; 7 — источник питания; S — усилитель

На рис. 14 представлена схема одного из термомагнитных газоанализаторов, в котором использована О-образная измерительная камера.


Измерительная камера 4состоит из расположенного под маг­нитными наконечниками 2 термоанемометра 3, который вместе с элементами 1 мостовой схемы образует первичный измеритель­ный преобразователь, реагирующий на изменение концентрации кислорода в пробе АГС. Сигнал с диагонали съема моста по­дается на вход усилителя 8, его выход связан с входом управляемого источника питания 7, нагрузкой которого служит нагре­ватель 5, являющийся устройством для создания компенсирующего патока тепловой конвекции. Измерительный прибор 6включен в цепь питания нагревателя.









Газоанализатор работает следующим образом. При отсутствии в пробе АГС кислорода отсутствует и поток термомагнитной конвекции FM. Создаваемый термоанемометром 3поток тепловой конвекции Ft1 уравновешен потоком тепловой конвекции Ft2, создаваемым нагревателем 5 при протекании через последний начального тока. Это состояние газоанализатора соответствует исходному состоянию, когда концентрация кислорода в пробе АГС равна нулю. При этом на входе в усилитель сигнал рассогласо­вания отсутствует.

При появлении в пробе АГС кислорода возникает поток термо­магнитной конвекции Fм вызывающий разбаланс мостовой схемы. На входе в усилитель появляется сигнал, который после усиления воздействует на управляемый источник питания таким образом, чтобы уменьшить ток через нагреватель 5. При этом уменьшается поток тепловой конвекции Ft2 и увеличивается результирующий поток тепловой конвекции FT = Ft1Ft2.

Результирующий поток тепловой конвекции будет увеличи­ваться до тех пор, пока он не уравновесит возникший поток термомагнитной конвекции, т. е. пока не наступит равенство FK = FT. При этом на входе в усилитель сигнал вновь станет рав­ным нулю, а изменившееся значение тока питания нагревателя 5 будет функцией концентрации кислорода в пробе АГС. Ана­логичным образом действует газоанализатор и при диапазонах с подавленным нулем. В этом случае исходному положению со­ответствует такое состояние компенсации, когда начальному значению потока термомагнитной конвекции соответствует равное ему значение результирующего потока тепловой конвекции. Рассмотренный термомагнитный компенсационный газоана­лизатор обеспечивает компенсацию при любых концентрациях кис­лорода в пробе АГС.

Прибор Газоанализатор АГ0011 [4]

Предназначен для непрерывого автоматического измерения объемной доли кислорода в невзрывоопасных двух или многокомпонентных газовых смесях (в т.ч. и воздухе) и выдачи измерительной информации в виде показаний по цифровому дисплею и стандартных электрических выходных сигналов информационной связи с другими изделиями

Область применения: металлургические, нефтеперерабатывающие заводы, ТЭС, электролизные и другие технологические установки.

Тип газоанализатора – стационарный

Способ забора пробы– принудительный

Принцип работы– термомагнитный

Наименование измеряемого компонента Диапазон измерения объемной доли, % Пределы допускаемой приведенной основной погрешности, % Наименование неизмеряемого компонента анализируемой среды
Кислород 0-1 ±5,0 Азот не нормируется;
Один из компонентов:
водород - от 0 до 1,2%
метан - от 0 до 1,2%
двуокись углерода от 0 до 15%
0-2 ±4,0
0-5, 0-10, 00-21, 0-30,
0-50, 0-80, 0-100
±2,0
0-21, 0-50 ±2,0 Воздух зоны производственных помещений по ГОСТ 12.1.005
0-2
0-5, 0-10, 0-21, 0-30
±4,0
±2,0
Двуокись углерода от 0 до 25%,
Азот-остальное
0-2 ±5,0 Двуокись углерода от 0 до 10%,
Водород от 0 до 15%,
Азот - остальное
15-30 ±2,0 Двуокись углерода от 0 до 3%,
Азот - остальное
50-100, 80-100 ±2,0 Азот
90-100, 95-100
95-100
±2,5
±4,0
Азот или аргон
Основные технические характеристики
Характеристики Значения Примечание
Параметры измеряемой среды:
- температура, °С
- давление (абсолютное), кПа
- влага, г/м3, не более
- пыль, г/м3, не более
- объемный расход, см3
- массовая концентрация сероводорода и аммиака, г/м3

0,01

Установление показаний Т0.9, с, не более 25
Время прогрева, мин, не более 30
Унифицированный выходной сигнал, мА 0-5, 0-20, 4-20 По заказу
Наличие порогов сигнализации по 4-м каналам:
Два на превышение - "много"
Два на понижение - "мало"
Регулируемые уставки
от 0 до 100% диапазона
измерения
Температура окружающей среды, °С От +10 до +50 По заказу от +5 до +50
Питание, В 220, 50Гц
Потребляемая мощность, ВА, не более 30
Габаритные размеры, мм 270x250x150
Срок службы, лет, не менее 10
Масса, кг, не более 9

Магнитопневматический метод.

Для газоанализатора, основанного на использовании магнито-пневматического принципа, необходима подача вспомогательного газа. В качестве вспомогательного можно использовать газ, не содержащий кислорода, а иногда и воздух. Вспомогательный газ служит в качестве пневматического связующего звена между анализируемым газом и чувствительным элементом. За счет притяги­вания магнитным полем кислорода анализируемой смеси повы­шается давление (примерно на 10-4 мбар), которое передается вспомогательному газу и регистрируется различными способами. Величина приращения давления определяется уравнением[5]

, (34)

где

— приращение давления; А — коэффициент пропорцио­нальности; km — магнитная восприимчивость анализируемого газа; kh — магнитная восприимчивость вспомогательного газа; Н — напряженность магнитного поля.

Отсюда видно, что на магнитопневматические газоанализаторы кисло­рода не оказывают влия­ния немагнитные свой­ства неизмеряемых компо­нентов.

Устройство, предложен­ное Кундтом , изме­ряет приращение давления непосредственно с помо­щью микроманометра. Од­нако этот способ не полу­чил распространения, что, возможно, определяется несовершенством измере­ния перепада давления.

Рис. 15. Схема магнитопкевматического га­зоанализатора на кислород типа Oxygor фирмы Maihak:

1 — вспомогательный канал; 2 — соединитель­ный канал; 3 — кольцевой канал; 4 — проволоч­ный нагревательный элемент; 5 — анализируе­мый газ; 6 — вспомогательный газ

Другой способ, предложенный Люфтом и Морманом , ис­пользует термоанемометрический мост, состоящий из проволоч­ных нагревателей, равновесие которого нарушается при измене­нии скорости потока. Принципиальная схема прибора приведена на рис. 15. Сравнительный газ под постоянным давлением по двум каналам 1 через прорези попадает в канал анализируемого газа. Одна из двух прорезей находится в сильном неоднородном магнитном поле. Пневматическое сопротивление обоих каналов 1 с помощью винта настраивается так, чтобы при одинаковой кон­центрации кислорода в анализируемом и вспомогательном газе движение газов в измерительной системе было полностью симме­тричным. При снижении, например, содержания кислорода в ана­лизируемом газе возникает давление, направленное от магнитов в сторону измерительного канала, так как противодавление кисло­рода в анализируемом газе против прорези становится меньше. Симметричное распределение потоков нарушается, и в соедини­тельном канале 2 возникает поперечное течение. Один из находя­щихся здесь проволочных нагревателей 4 охлаждается. Вместе с находящимися в кольцевом канале 3 нагревателями он образует мост Уитстона. Под действием протекающего тока температуранагревателей достигает примерно до 100 °С. Вызванное охлажде­нием изменение сопротивления нарушает баланс моста и является мерой разности концентраций кислорода. На сравнительные элементы, установленные в кольцевом канале 3, не влияет попе­речный поток, так как этот канал связан с каналом 1 капиллярами. Эти элементы служат для сохранения нулевой точки газоанализа­тора при изменении давления и температуры. Влияние завися­щих от положения нагревателей конвективных потоков в сравни­тельном канале устраняется при помо­щи установочного винта. В противо­положность термомагнитным прибо­рам сигнал этих газоанализаторов не зависит от немагнитных свойств компонентов анализируемой смеси, таких как теплопроводность, удель­ная теплоемкость и вязкость. Они особенно пригодны для изме­рения концентрации кислорода в газовых смесях с сильно изме­няющимся составом и дл» измерения разности содержания кисло­рода в двух газах, которые используют как анализируемый и сравнительный (например, в процессах окисления в химии или биологии). Измерение содержания кислорода в агрессивных га­зах возможно, но из-за диффузии агрессивных компонентов в срав­нительный газ промышленной применение такого метода изме­рения проблематично. Вспомогательный раз, в качестве кото­рого используют азот, диоксид углерода или воздух, можно по­давать из баллона или с помощью насоса. Применение СО2 имеет по сравнению с азотом преимущество вследствие ее более высокой теплоемкости, более низкой теплопроводности и вязкости, что приводит почти к удвоению чувствительности анализа.