Смекни!
smekni.com

Контроль качества сгорания топлива в методических нагревательных печах (стр. 9 из 20)

При использовании масс-спектрометрии в газовом анализе применяют следующие способы ионизации пробы АГС : электронный удар, фотоионизацию, химическую ионизацию, ионизацию в пламени, полевую ионизацию, поверхностную ионизацию

Образующиеся в области ионизации ионы формируются опти­ческой системой источника в ионный пучок, или сгусток.

Полученные в источнике ионные пучки (сгустки) разделяются в электрических и магнитных полях или по времени пролета.

По способу разделения ионов масс-спектрометры делят на статические и динамические. В статических масс-спектрометрах используются постоянные или медленно изменяющиеся во времени электрические или магнитные поля. В динамических масс-спектро­метрах ионы с различными массами разделяются в пространстве либо по времени пролета, лишенном электрических и магнитных полей, либо с высокочастотными электрическими полями.

Следующая стадия масс-спектрометрического анализа — улавливание и регистрация ионов. Приемные устройства играют важную роль в собирании разделенного продукта и в значитель­ной степени определяют характеристики масс-спектрометра в целом.

По способу регистрации ионов масс-спектрометры делятся на масс-спектрографы, в которых одновременно регистрируются ионы всех или части компонентов пробы АГС фотографическим спосо­бом, и собственно на масс-спектрометры, в которых ионы регистри­руются последовательным измерением ионного тока различных компонентов пробы АГС.

Применение масс-спектрометров при анализе газовых смесей эффективно при анализе многокомпонентных газовых смесей, ког­да контроль ведется по нескольким компонентам.

Общее число определяемых компонентов может достигать 20 и более.

Основные параметры масс-спектрометров — диапазон масс определяемых компонентов и разрешающая способность, которую определяют отношением М/

М (М — максимальное массовое число компонента, регистрируемого раздельно от другого компо­нента, массовое число которого отличается от максимального на
M, равного единице).

Основные преимущества масс-спектрометров следующие: не­прерывность и одновременность анализа всех компонентов; малое приборное запаздывание; относительно одинаковое влияние внеш­них условий на погрешность измерения, что сохраняет точность их соотношений; дешевизна изготовления и эксплуатация прибора (при условии достаточно широкого спектра анализов) .

Особым преимуществом масс-спектрометрического метода, на­ряду с достаточно высокой чувствительностью (≈ 10-12— 10-15 г ), является небольшой расход пробы АГС.

Масс-спектрометр MX 1215. Предназначен для определения концентраций кислорода, водорода, оксида и диоксида углерода, азота и аргона в отходящих газах кислородного конвертора, а также мартеновского, доменного и химических производств.

Масс-спектрометром определяют одновременно шесть компо­нентов пробы АГС, имеющих молекулярную массу от 2 до 44.

Время реагирования Гэо не превышает 2 с; потребляемая мощность 6,5 кВт; масса 1100 кг.

Масс-спектрометр MX 1215 представляет собой статический масс-спектрометр со 180° магнитным полем, в котором ионы опре­деляемого компонента пробы АГС разделяются по значению отношения массы к заряду и фокусируются по направлению дви­жения.

Одним из важнейших направлений в области масс-спектрометрического приборостроения является разработка унифициро­ванного комплекса масс-спектрометрических приборов (УКМСП), включающего масс-спектрометры первого, второго и третьего классов с предельной разрешающей способностью соответственно 105, 104 и 500. Приборы УКМСП в зависимости от решаемой задачи комплектуются различными системами ввода пробы АГС, источниками и приемниками ионов, системами регистрации и об­работки информации, вспомогательными устройствами

Магнитные методы.

Кислород обладает наибольшей магнитной восприимчивостью по сравнению с другими газами. В табл. 1 приведены объемная и относительная (относительно кислорода) магнитная воспри­имчивость некоторых газов (при 7 = 0 °С).

Таблица 1. Магнитные свойства некоторых газов.

Газ

Химическая

формула

Магнитная вое

приимчивость

объемная, х-109 относитель­ная
Кислород 02 146 1,0
Воздух (21 % О2) 30,8 0,21
Монооксид азота NO 53,0 0,362
Диоксид азота NO2 9,0 0,0616
Оксид азота (I) N2O 3,0 0,02
Ацетилен C2Ha 1,0 0,0068

Из табл. 3 видно, что большинство газов обладает ничтожно малой по сравнению с кислородом магнитной восприимчивостью, что обеспечивает возможность избирательного определения кон­центрации кислорода во многих газовых смесях. Только два газа — моноокисд и диоксид азота — имеют относительно боль­шую магнитную восприимчивость, но они встречаются весьма редко в смесях промышленных газов, к тому же монооксид азота в присутствии кислорода вступает с ним в реакцию и переходит в диоксид азота.

Для определения концентрации молекулярного кислорода наибольшее распространение получили следующие методы: термо­магнитный, магнитомеханический, магнитопневматический.

Термомагнитный метод.

Парамагнитные газы характеризуются положительным значением магнитной восприимчивости. Это зна­чит, что, если ввести парамагнитный газ в зону неоднородного магнитного поля, газ будет ориентироваться в направлении поля. Иными словами, парамагнитный газ втягивается в неоднородное магнитное поле, а диамагнитный газ выталкивается.

Силу, действующую на объем газа Vв неоднородном магнит­ном поле, характеризующемся напряженностью H и градиентом напряженности в направлении оси абсцисс

, определяют по формуле :

(22)

Объемная магнитная восприимчивость смеси веществ, не всту­пающих в химическое взаимодействие, равна сумме парциальных восприимчивостей отдельных компонентов, т. е. определяется по закону аддитивности:

(23)

где

и Сi — объемная магнитная восприимчивость и объемная доля i-ro компо­нента газовой смеси.

Магнитная восприимчивость сложной смеси, содержащей как парамагнитные, так и диамагнитные составляющие, определяется соотношением:

(24)

где

—объемная магнитная восприимчивость соответственно парамагнит­ной и диамагнитной составляющей сложной смеси.

Объемная магнитная восприимчивость веществ (диамагнети-ков и парамагнетиков) зависит как от давления, так и от темпера­туры, поскольку они влияют на плотность р.

Согласно закону Бойля — Мариотта для газов

p = pM/RT,(25)

где М — молекулярная масса; R — газовая постоянная.

С учетом плотности (25) получим (при поправке Д = 0): для диамагнитных газов

(26)

для парамагнитных газов (кислорода)

(27)

где

— удельная магнитная восприимчивость.

Подставляя (26) и (27) в (24), получим:

(28)

где индексы п и д означают принадлежность газа к парамагнетикам и диамаг-нетикам соответственно.

Учитывая (22), выражение для силы Fможно записать в виде:

(29)

Если на неоднородное магнитное поле наложить неоднородное тепловое поле, то в зоне, соответствующей максимуму темпера­туры, объем газа dVнаряду с ориентирующим действием магнит­ного поля будет испытывать дезориентирующее действие тепло­вого поля в соотношении, обратно пропорциональном квадрату температуры.

На объем газа dV1, находящийся в зоне с температурой Т\, действует сила

(30)

На объем газа dV2, находящийся в зоне с температурой Г2 действует сила

(31)

При Т1> Т2возникает перепад давлений, вызывающий переме­щение более холодных элементов объема газа в область более вы­соких температур и вытеснение оттуда нагретых элементов объема газа, испытывающих меньшее ориентирующее действие магнит­ного поля:

(32)

Это перемещение элементов объема газа, или так называемая магнитная конвекция, тем сильнее, чем выше парциальное давление парамагнитной составляющей смеси, т. е. чем выше абсолютное значение удельной магнитной восприимчивости.