Смекни!
smekni.com

Электрические цепи с нелинейными преобразователями и оперативная коррекция режима энергосистемы (стр. 1 из 3)

Хмельник С.И., к.т.н.

Институт "Энергосетьпроект", Москва

Рассматриваются электрические цепи с нелинейными преобразователями. Показывается, что в такимх цепях достигается оптимум некоторой выпуклой функции токов электрической цепи. Далее рассматривается задача оперативной коррекции режима энергосистемы и формулируется критерий качества оптимизации режима по активной мощности. Показывается, что этот критерий совпадает с вышеуказанной функцией с точностью до обозначений. Тем самым задача оперативной коррекции сводится к расчету определенной электрической цепи или к решению задачи выпуклого программирования. Указывается метод решения этой задачи

1. Простая электрическая цепь

Рассмотрим электрическую цепь с источниками тока, подключенными к узлам цепи, и источниками напряжения, включенным в ветви цепи. Такая электрическая цепь описывается следующей системой уравнений:

, (1)

, (2)

где

H - вектор токов, создаваемых источниками тока;

I - вектор токов в ветвях цепи;

E - вектор напряжений в ветвях цепи;

- вектор узловых потенциалов;

N - матрица инциденций с элементами 1,0,-1;

R - диагональная матрица сопротивлений в ветвях цепи.

В этой системе уравнение (2) описывает первый закон Кирхгофа, уравнениe (1) - второй закон Кирхгофа.

Рассмотрим функцию

. (3)

Необходимые условия оптимума этой функции при ограничениях вида (2) имеют вид уравнения (1), где

является вектором неопределенных множителей Лагранжа для условия (2), которые появляются, когда оптимизируемая функция дополняется слагаемым
. Далее имеем:

(4)

Отсюда следует, что функция (3), имеет глобальный минимум. Итак, минимизация функции (3) при ограничении в виде уранений первого закона Кирхгофа (2) приводит к уравнениям второго закона Кирхгофа (1). Следовательно, расчет электрической цепи постоянного тока эквивалентен поиску минимума функции (3) при ограничении (2). Другими словами электрическая цепь моделирует задачу квадратичного программирования.

Деннис в [1] показал, что все эти выводы справедливы и в том случае, когда электрическая цепь содержит диоды и так называемые трансформаторы постоянного тока, которые мы далее будем называть трансформаторами Денниса - ТД.

Диоды описываются неравенствами и равенством вида

(5)

(6)

.

(7)

Необходимые условия оптимума функции (3) при ограничениях вида (5) имеют вид (6, 7).

Трансформатор Денниса ТДсодержит две ветви - первичную с током

и напряжением
и вторичную с током
и напряжением .Он описываются уравнениями

(8)

(9)

где h - коэффициент трансформации. Из этих уравнений следует, что

(10)

т.е. мощности, отдаваемые первичной и вторичной ветвями ТДв электрическую цепь, в сумме равны нулю. Необходимые условия оптимума функции (3) при ограничениях вида (8) имеют вид (9).

2. Обратимые преобразователи

Обратимый преобразователь (ОП) предложен в [2] и представляет собой устройство, содержащее две ветви - первичную с током

и напряжением
и вторичную с током
и напряжением
. В нем (в отличие от ТД) токи ветвей зависят от напряжений смежных ветвей следующим образом:

(1)

(2)

где

- дифференцируемая функция. Будем обозначать ОП так, как показано на фиг. 2.1.

В частности, при , где h - константа (коэффициент преобразования), этот преобразователь является линейным - (ЛОП). В нем токи ветвей зависят от напряжений смежных ветвей следующим образом:

(3)

(4)

Отсюда следует, что

(5)

т.е. мощности, отдаваемые первичной и вторичной ветвями ЛОП в электрическую цепь, в сумме равны нулю (также как и в ТД).

Пример 2.1.. Конструкция ЛОП представлена на фиг. 2.2. Он состоит из двух источников тока VC-1 и VC-2, управляемых напряжением: напряжение на одном из них является управляющим для другого

В общем случае ОП является нелинейным (НОП).

Пример 2.2. В [3] рассмотрен синусно-косинусный преобразователь СКП, в котором

(6)

(7)

Известно, что для энергетических расчетов можно принять

(8)

(9)

В этом случае СКП может быть реализован на сумматорах и умножителях.

3. Электрическая цепь, содержащая ОП.

Уравнения электрической цепи, содержащей ОП, учитывают тот факт, что в некоторые ветви влючены первичные или вторичные ветви ОП, а некоторые из токов ветвей являются одновременно первичными или вторичными токами ОП [2]. Эти уравнения имеют следующий вид:

(1)

(2)

(3)

(4)

где

- диагональная матрица, в которой "1" находятся в элементах, соответствующих ветвям, состоящим из первичных цепей ОП,

- диагональная матрица, в которой "1" находятся в элементах, соответствующих ветвям, состоящим из вторичных цепей ОП.

Рассмотрим функцию

(5)

Необходимые условия оптимума этой функции при ограничениях вида (2) и (3) имеют вид уравнений (1) и (4), где

является вектором неопределенных множителей Лагранжа для условия (2), когда оптимизируемая функция дополняется слагаемым ,

является вектором неопределенных множителей Лагранжа для условия (3), когда оптимизируемая функция дополняется слагаемым

.

Таким образом, расчет данной электрической цепи эквивалентен поиску безусловного оптимума функции

(6)

Далее имеем:

,
,
,

Отсюда следует, что функция (11) имеет глобальный минимум при

.

(7)

Это имеет место, например, при

и, в частности, для ЛОП. Синусно-косинусный преобразователь СКП, рассмотренный в примере 2.2, удовлетворяет соотношению (7) при
.

Таким образом, при соблюдении условия (7) в электрической цепи достигается глобальный минимум некоторой выпуклой функции (6) токов I, потенциалов и напряжений E электрической цепи. Все эти выводы справедливы и в том случае, когда она содержит трансформаторами Денниса и диоды. Последнее означает, что математическая модель (1-4) электрической цепи с ОП может быть дополнена неравенствами вида (1.5-1.7):

(8)