Смекни!
smekni.com

К вопросу об физической сущности процесса замедления времени в специальной и общей теориях относительности (стр. 1 из 5)

.

И.В. Злобин

Член Финляндской Астрономической Ассоциации,Хельсинки, Финляндия

1. Введение.

А. Эйнштейну удалось в 1905 г. В работе " К электродинамики движущихся тел " [1] сформулировать основные принципы специальной теории относительности (СТО). Позднее, в 1916 г. им же, но уже в работе " Основы общей теории относительности " [ 1 ] в окончательном виде излагается общая теория относительности (ОТО), включая и гравитацию.

Решающим аргументом в пользу справедливости построенных теорий явились, предсказанные СТО и ОТО определенные следствия и эффекты. Данные астрономических наблюдений, а так же большое число физических экспериментов, подтвердивших правильность ожидаемых явлений, способствовали позитивному укреплению новых представлений в физике.

Для нас, из всего семейства физических следствий, вытекающих из СТО и ОТО, исключительный интерес имеют две стороны одного явления. Это: релятивистское замедление Времени и зависимость хода Времени от гравитационного поля.

Думается, здесь будет не лишним напомнить, как происходит процесс течения Времени в выше упомянутых теориях.

1.1. Процесс замедления Времени в СТО.

Как известно, в специальной теории относительности рассматривается выделенный класс инерциальных систем отсчета. Эти инерциальные системы отсчета формируют некоторую совокупность одинаково равномерно и прямолинейно движущихся наблюдателей, заполняющих все пространство.

Пусть, мы наблюдаем из некоторой инерциальной системы отсчета К произвольным образом движущиеся со скоростью v относительно нас часы . Будем рассматривать это движение как равномерное. Тогда, в каждый момент времени можно ввести неподвижно связанную с движущимися часами систему координат К', которая будет являться тоже инерциальной.

Посмотрим, каким образом связаны между собой показания часов в системах отсчета К и К'. Дифференциалы координатного t и собственного

Времени скоррелированы следующей зависимостью

, (1)

где с - скорость света. Из выражения ( 1 ) следует, что если

, то при фиксированном интервале

Интегрируя формулу ( 1), легко найти промежуток Времени, показываемый движущимися часами, если по неподвижным часам пройдет Время

. (2)

Собственное Время движущегося объекта всегда меньше, чем соотвествующий промежуток Времени в неподвижной системе. Напомним, что собственным Временем называется Время, отсчитываемое по часам движущимся вместе с данным объектом. А релятивисткий параметр

есть, так называемый,
-фактор [2]. Он играет ключевую роль в специальной теории относительности.

Явление, описанное нами, имеет на сегодняшний день успешное подтверждение в ряде физических экспериментов и наблюдений. Приведем одно из них, которое стало уже классическим. Время жизни

-мезона в покое составляет
сек . Если бы, эта элементарная частица двигалась изначально со скоростью света, то расстояние, пройденное ею в верхних слоях атмосферы, не превышало бы 600 м . Однако мю-мезона, образовавшийся при столкновении космических лучей с атомами земной атмосферы на высоте нескольких километров, успевает пройти путь до поверхности Земли, где они регистрируются физическими приборами. Следовательно, с точки зрения земного наблюдателя Время
-мезона в несколько раз превышает его собственное Время.

1.2. Процесс замедления Времени в ОТО.

Согласно существующим представлениям, в общей теории относительности выбор системы отсчета ничем не ограничен. Конгруэнция мировых линий наблюдателей представляет собой объединение кривых линий. Под конгруэнцией понимается такой класс линий, когда через каждую точку проходит одна и только одна линия. Поскольку в ОТО пространство-время искривлено, то весьма проблематично выделить в этих условиях инерциальные системы отсчета. В этом случае, направление Времени для каждого наблюдателя определяется вдоль его собственной мировой линии. Направление Времени естественно определяется касательной к мировой линии

, где
- координата вдоль линии; ds - его длина [З].

Вследствие существования в ОТО кривизны пространства-времени будет иметь зависимость течение Времени от поля тяготения. Эта зависимость выражается в том, что Время обладает неголономностью, т.е. отсутствует единая синхронизация. Наиболее полно можно осмыслить процесс замедления Времени, если воспользоваться внешним решением Шварцшильда.

Пусть из двух наблюдателей один находится около сферы Шварцшильда

, другой - на большом расстоянии от нее
. Величину
называют гравитационным радиусом тела, где G - гравитационная постоянная; М - масса тела; с - скорость света. Первый из наблюдателей описывает события, пользуясь метрикой Минковского в сферических координатах

(3)Второй - использует метрику Шварцшильда

(4)

Обозначим через

- интервал Времени между двумя событиями, которые произошли на расстоянии r. Примем, для простоты рассуждения, что это будет промежуток Времени между двумя сигналами, которые первый наблюдатель передает второму. Последний установит, что сигналы разделены интервалом Времени dt. Здесь, Время
будет называться собственным Временем, а Время t - координатным . Предлположим, что геометрические координаты обоих наблюдателей остаются неизменными, т.е.
. Учитывая, что для промежутка собственного Времени интервал ds имеет вид
, где
- временная координата,
- некоторая функция от временной координаты; можно определить зависимость между дифференциалами
[4]

, (5)

. (6)

Интегрируя обе части равенства ( 6 ) можно найти промежутки Времени показываемые часами фиксирующими собственное и координатное Время

. (7)

Из выражения ( 5 ) видно, что

. Знак равенства фигурирует на бесконечности, где t совпадает с
. А равенство ( 6 ) показывает, что если
, то при любом конкретном интервале собственного Времени
,
, то собственное Время совпадает с координатным,
.

Таким образом, на конечных расстояниях от масс происходит замедление Времени по сравнению со Временем на бесконечности.

Для проверки показаний хода часов при воздействии на них гравитационного потенциала в середине 70-х годов была проведена серия экспериментов. Можно отметить такие наиболее значительные из них - это эксперименты: Хейфеле - Китинга [5], Аллея с сотрудниками [б], а так же Вессе - Левина [7]. Результаты этих опытов подтвердили эйнштейновские предсказания.

1.3. Постановка задачи.

Сегодня, в рамках рассматриваемой проблемы, можно говорить о том, что фактически в специальной и общей теориях относительности сформулированы только причины, вследствие которых происходит интересующий нас динамический процесс. По всей видимости, скрытый внутренний механизм замедления Времени должен базироваться на физических критериях, которые тесным образом связаны с самой физической сущностью Времени.

Таким образом, суть данного исследования сводится к тому, чтобы указать на существующую возможность описать, с точки зрения геометрии, явление замедления Времени оформленное в СТО и ОТО, как процесс, который имеет одну и ту же физическую основу.

2. Теоретическая часть.