Смекни!
smekni.com

Преподавание алгебраического материала в начальной школе (стр. 4 из 14)

- координация двух систем действия составляет новую схему, присоединяемую к предыдущим;

- операция может развиваться в двух направлениях;

- при возвращении к исходной точке мы находим ее неизменной;

- к одной и той же точке можно прийти разными путями, причем сама точка остается неизменной.

Факты "самостоятельного" развития ребенка (т.е. развития, независимого от прямого влияния школьного обучения) показывают несоответствие порядка этапов геометрии и этапов формирования геометрических понятий у ребенка. Последние приближаются к порядку преемственности основных групп, где топология является первой. У ребенка, по данным Ж.Пиаже, вначале складывается интуиция топологическая, а затем он ориентируется в направлении проективных и метрических структур. Поэтому, в частности, как отмечает Ж.Пиаже, при первых попытках рисования ребенок не различает квадратов, окружностей, треугольников и других метрических фигур, но прекрасно различает фигуры открытые и закрытые, положение "вне" или "внутри" по отношению к границе, разделение и соседство (не различая до поры до времени расстояния) и т.д. ([17], стр.23).

Рассмотрим основные положения, сформулированные Ж.Пиаже, применительно к вопросам построения учебной программы. Прежде всего, исследования Ж.Пиаже показывают, что в период дошкольного и школьного детства у ребенка формируются такие операторные структуры мышления, которые позволяют ему оценивать фундаментальные характеристики классов объектов и их отношений. Причем уже на стадии конкретных операций (с 7 - 8 лет) интеллект ребенка приобретает свойство обратимости, что исключительно важно для понимания теоретического содержания учебных предметов, в частности математики.

Эти данные говорят о том, что традиционная психология и педагогика не учитывали в достаточной мере сложного и емкого характера тех стадий умственного развития ребенка, которые связаны с периодом от 2 до 7 и от 7 до 11 лет.

Рассмотрение результатов, полученных Ж.Пиаже, позволяет сделать ряд существенных выводов применительно к конструированию учебной программы по математике. Прежде всего фактические данные о формировании интеллекта ребенка с 2 до 11 лет говорят о том, что ему в это время не только не "чужды" свойства объектов, описываемые посредством математических понятий "отношение - структура" но последние сами органически входят в мышление ребенка.

Традиционные программы не учитывают этого обстоятельства. Поэтому они не реализуют многих возможностей, таящихся в процессе интеллектуального развития ребенка.

Материалы, имеющиеся в современной детской психологии, позволяют положительно оценивать общую идею построения такого учебного предмета, в основе которого лежали бы понятия об исходных математических структурах. Конечно, на этом пути возникают большие трудности, так как еще нет опыта построения такого учебного предмета. В частности, одна из них связана с определением возрастного "порога", с которого осуществимо обучение по новой программе. Если следовать логике Ж.Пиаже, то, видимо, по этим программам можно учить лишь тогда, когда у детей уже полностью сформировались операторные структуры (с 14 - 15 лет). Но если предположить, что реальное математическое мышление ребенка формируется как раз внутри того процесса, который обозначается Ж.Пиаже как процесс складывания операторных структур, то эти программы можно вводить гораздо раньше (например, с 7 - 8 лет), когда у детей начинают формироваться конкретные операции с высшим уровнем обратимости. В "естественных" условиях, при обучении по традиционным программам формальные операции, возможно, только и складываются к 13 - 15 годам. Но нельзя ли "ускорить" их формирование путем более раннего введения такого учебного материала, усвоение которого требует прямого анализа математических структур?

Представляется, что такие возможности есть. К 7 - 8 годам у детей уже в достаточной мере развит план мыслительных действий, и путем обучения по соответствующей программе, в которой свойства математических структур даны "явно" и детям даются средства их анализа, можно быстрее подвести детей к уровню "формальных" операций, чем в те сроки, в которые это осуществляется при "самостоятельном" открытии этих свойств.

При этом важно учитывать следующее обстоятельство. Есть основания полагать, что особенности мышления на уровне конкретных операций, приуроченном Ж.Пиаже к 7 - 11 годам, сами неразрывно связаны с формами организации обучения, свойственными традиционной начальной школе. Это обучение (и у нас, и за рубежом) ведется на основе предельно эмпирического содержания, зачастую вообще не связанного с понятийным (теоретическим) отношением к объекту. Такое обучение поддерживает и закрепляет у детей мышление, опирающееся на внешние, прямым восприятием уловимые признаки вещей.

Таким образом, в настоящее время имеются фактические данные, показывающие тесную связь структур детского мышления и общеалгебраических структур, хотя "механизм" этой связи далеко не ясен и почти не исследован. Наличие этой связи открывает принципиальные возможности (пока лишь возможности!) для построения учебного предмета, развертывающегося по схеме "от простых структур - к их сложным сочетаниям". Одним из условий реализации этих возможностей является изучение перехода к опосредствованному мышлению и его возрастных нормативов. Указанный способ построения математики как учебного предмета сам может быть мощным рычагом формирования у детей такого мышления, которое опирается на достаточно прочный понятийный фундамент.

1.3 Проблема происхождения алгебраических понятий и ее значение для построения учебного предмета

Разделение школьного курса математики на алгебру и арифметику, конечно же, условно. Переход от одного к другому происходит постепенно. В школьной практике смысл этого перехода маскируется тем, что изучение дробей фактически происходит без развернутой опоры на измерение величин - дроби даются как отношения пар чисел (хотя формально важность измерения величин в методических руководствах признается). Развернутое введение дробных чисел на основе измерения величин неизбежно приводит к понятию действительного числа. Но последнего как раз обычно и не происходит, так как учащихся долго держат на работе с рациональными числами, а тем самым задерживают их переход к "алгебре".

Иными словами, школьная алгебра начинается именно тогда, когда создаются условия для перехода от целых к действительным числам, к выражению результата измерения дробью (простой и десятичной - конечной, а затем бесконечной).

Причем исходным может быть знакомство с операцией измерения, получение конечных десятичных дробей и изучение действий над ними. Если учащиеся уже владеют такой формой записи результата измерения, то это служит предпосылкой для "забрасывания" идеи о том, что число может выражаться и бесконечной дробью. И эту предпосылку целесообразно создавать уже в пределах начальной школы.

Если понятие дробного (рационального) числа изъять из компетенции школьной арифметики, то граница между нею и "алгеброй" пройдет по линии различия между целым и действительным числами. Именно оно "рубит" курс математики на две части. Здесь не простое различие, а принципиальный "дуализм" источников - счета и измерения.

Следуя идеям Лебега относительно "общего понятия числа", можно обеспечить полное единство преподавания математики, но лишь с момента и после ознакомления детей со счетом и целым (натуральным) числом. Конечно, сроки этого предварительного ознакомления могут быть разными (в традиционных программах для начальной школы они явно затянуты), в курс начальной арифметики можно даже вносить элементы практических измерений (что имеет место в программе), - однако все это не снимает различия оснований у арифметики и "алгебры" как учебных предметов. "Дуализм" исходных пунктов препятствует и тому, чтобы в курсе арифметики по-настоящему "приживались" разделы, связанные с измерением величин и переходом к подлинным дробям. Авторы программ и методисты стремятся сохранить устойчивость и "чистоту" арифметики как школьного учебного предмета. Указанное различие источников является основной причиной преподавания математики по схеме - сначала арифметика (целое число), затем "алгебра" (действительное число).

Эта схема кажется вполне естественной и незыблемой, к тому же она оправдывается многолетней практикой преподавания математики. Но есть обстоятельства, которые с логико-психологической точки зрения требуют более тщательного анализа правомерности этой жесткой схемы преподавания.

Дело в том, что при всем различии этих видов чисел они относятся именно к числам, т.е. к особой форме отображения количественных отношений. Принадлежность целого и действительного чисел к "числам" служит основанием для предположения о генетической производности и самих различий счета и измерения: у них есть особый и единый источник, соответствующий самой форме числа. Знание особенностей этой единой основы счета и измерения позволит более четко представить условия их происхождения, с одной стороны, и взаимосвязь - с другой.

К чему же обратиться, чтобы нащупать общий корень ветвистого дерева чисел? Представляется, что прежде всего необходимо проанализировать содержание понятия величина. Правда, с этим термином сразу связывается другой - измерение. Однако правомерность подобного соединения не исключает определенной самостоятельности смысла "величины". Рассмотрение этого аспекта позволяет сделать выводы, сближающие, с одной стороны, измерение со счетом, с другой - оперирование числами с некоторыми общематематическими отношениями и закономерностями.