Смекни!
smekni.com

Перспективы развития экологического сознания школьников при изучении темы "Полимеры" в курсе химии (стр. 3 из 9)

Полимеризация.

Полимеризацией называют процесс образования макромолекул путем последовательного присоединения молекул мономеров М к активному центру М* растущей молекулы. При этом активный центр переходит во вновь присоединившееся звено:

М* + М1 → М – М 1* М – М 1* + М2 → М – М 1 - М2*

М – М 1 - М2* + М3 → М – М 1 - М2* - М3*

М1 ∙∙∙ Мn* + М → М1 ∙∙∙ Мn+1*

В настоящее время в мире полимеризацией получают около 5/4 полимеров как гомо- так и гетероцепных. Процесс протекает по цепному механизму. Цепными реакциями называются такие, в которых образование каких-либо активных частиц (активных центров) приводит к тому, что каждая из них вызывает цепь последовательных реакций.

Различают гомо- и сополимеризацию. Гомополимеризация – это реакция соединения нескольких (n) молекул одного мономера:

nM → [ - M -]n

В сополимеризации участвуют молекулы двух (или более) мономеров и образуется статистический или блок-сополимер:

[ - M1 – M2 -]n+m

nM1 + mM2-

[ - M1 – ]n - → [ – M2 -]m

Процесс полимеризации включает следующие основные стадии: образование активных центров, рост цепи, обрыв цепи. Образование активных центров протекает при взаимодействии инициатора или катализатора с мономером. Эта стадия характеризуется низкой скоростью, требует затраты энергии. Рост цепи происходит путем присоединения молекул мономера к активным центрам с передачей активного центра на присоединившуюся молекулу. Эта стадия обычно идет быстро и сопровождается выделением энергии. Обрыв цепи происходит вследствие

дезактивации активных центров, в результате которой рост данной молекулы прекращается. Обрыв цепи осуществляется двумя путями: путем уничтожения активного центра Mn*, его перехода в неактивное состояние

Mn* Mn

и передачей цепи с одного активного центра на другую молекулу мономера с превращением ее в новый растущий активный центр:

Mn* + MMn + M*

Скорость реакций обрыва обычно лимитируется скоростью диффузии активных центров в реакционной среде. От соотношения скоростей роста и обрыва цепи зависят степень полимеризации и молекулярная масса образующегося полимера: чем выше скорость роста и ниже скорость обрыва цепи, тем больше молекулярная масса. Активными центрами цепной полимеризации могут быть свободные радикалы (электронейтральные частицы, имеющие один или два неспаренных электрона), ионы (положительно или отрицательно заряженные частицы), ион-радикалы. В соответствии с характером активных центров различают радикальную и ионную (анионную, катионную, ионо-координационную) полимеризацию.

Поликонденсация.

Поликонденсацией называют ступенчатый процесс получения полимеров из би- или полифункциональных соединений, в котором рост макромолекул происходит путем химического взаимодействия функциональных групп молекул мономеров друг с другом и с n-мерамимежду собой. На концах образующихся макромолекул всегда присутствуют свободные функциональные группы. Различают гомополиконденсацию и гетерополиконденсацию.

Гомолполиконденсацией называют реакции, в которых участвует минимально возможное для данного случая число типов мономеров или только молекулы одного мономера, содержащего два типа функциональных групп. Типичным примером гомополиконденсации служит синтез полиамидов из аминокислот.

Гетерополиконденсацией называют реакции с участием молекул мономеров, содержащих различные функциональные группы, способные взаимодействовать друг с другом, например диаминов с дикарбоновыми кислотами.

Реакцию, в которой помимо мономеров, необходимых для протекания, участвуют и другие мономеры, называют сополиконденсацией.

По пространственному строению получаемых полимеров различают линейную и трехмерную поликонденсацию. В последние годы большое значение приобрела полициклоконденсация – двухступенчатый синтез лестничных полимеров путем внутримолекулярной циклизации продуктов, полученных на первой стадии. Процессы поликонденсации широко применяются для синтеза полимеров с рядом специфических свойств: термостойких, полупроводников, электропроводящих, фотоактивных, биополимеров, катализаторов, ионитов и др.

1.5 Применение полимеров

На конец двадцатого столетия производство синтетических пластмасс в мире достигло 130 млн.т/год. Такие многотоннажные полимеры как полиэтилен и полипропилен химически устойчивы, механически прочны, поэтому их широко применяют при изготовлении оборудования в различных областях промышленности (аппараты, трубы, сосуды и т.д.). Они обладают высокими электроизоляционными свойствами. Полиэтилен и полипропилен в тонком слое хорошо пропускают ультрафиолетовые лучи. Пленки из этих материалов используют вместо стекла в парниках и теплицах. Их применяют также для упаковки разных продуктов. Политетрафторэтилена (тефлон) – механически прочное и химически очень стойкое вещество. Тефлон по химической устойчивости превосходит все металлы, даже золото и платину. Он выдерживает температуру до 260 °С, не горит и является отличным диэлектриком. Из фенолформальдегидной смолы, добавляя различные наполнители (древесная мука, хлопчатобумажная ткань, стеклянное волокно, различные красители и т.д.), получают фенолформальдегидные пластмассы, которые сокращенно называют фенопластами. Из фенопластов получают шарикоподшипники и шестерни, тормозные накладки, ступеньки для эскалаторов, широко применяют в радио- и электротехнике в качестве электроизоляционного материала, изготавливают автоцистерны, кузова автомобилей, телефонные аппараты, электрические контактные платы, органическое стекло, искусственную кожу, клеенку и многое другое.

Но большой объем производства полимеров и связанное с этим широкое использование полимерных пленок привели к появлению важнейшей проблеме – загрязнение окружающей природной среды отходами полимерной продукции.

1.6 Экологические проблемы производства полимеров и утилизации пластмассовых отходов

Производство полиэтилена, полипропилена, поливинилхлорида приносит немалые экологические проблемы для окружающей природной среды. Это использование различных токсичных мономеров и катализаторов, образование сточных вод и газовых выбросов, обезвреживание которых сопряжено с большими энергетическими, сырьевыми и трудовыми затратами и не всегда добросовестно выполняется производителями [5].

Производство полиэтилена и других полиолефинов относиться к категории пожароопасных и взрывоопасных (категория А): этилен и пропилен образуют с воздухом взрывчатые смеси. Оба мономера обладают наркотическим действием. ПДК в воздухе этилена составляет 0,05 ∙ 10 -3 кг/м3, пропилена - 0,05 ∙ 10 -3 кг/м3. Особенно опасно производство полиэтилена высокого давления (ПЭВД), поскольку оно связано с применением высокого давления и температуры. В связи с возможностью взрывного разложения этилена во время полимеризации реакторы оборудуют специальными предохранительными устройствами (мембраны) и устанавливают в боксах. Управление процессом полностью автоматизировано. При производстве полиэтилена низкого давления и полипропилена особую опасность представляет применяемы в качестве катализатора диэтилалюминийхлорид. Он отличается высокой реакционной способностью. При контакте с водой и кислородом взрывается. Все операции с металлоорганическими соединениями должны проводиться в атмосфере чистого инертного газа (очищенный азот, аргон). Небольшие количества триэтилалюминия можно хранить в запаянных ампулах из прочного стекла. Большие количества следует хранить в герметически закрытых сосудах, в среде сухого азота, либо в виде разбавленного раствора в каком-либо углеводородном растворителе (пентан, гексан, бензин – чтобы не содержали влаги). Триэтилалюминий является токсичным веществом: при вдыхании его пары действуют на легкие, при попадании на кожу возникают болезненные ожоги. В этих производствах используется также бензин. Бензин - легковоспламеняющаяся жидкость, температура вспышки для разных сортов бензина колеблется от - 50 до 28 °С. Концентрационные пределы воспламенения смеси паров бензина с воздухом составляют 2-12% (объемных). На организм человека оказывает наркотическое действие. ПДК бензина в воздухе = 10,3 ∙ 10 -3 кг/м3. Порошкообразные полиолефины образуют взрывоопасные смеси. ПДК полипропилена составляет: 0,0126 кг/м3. При транспортировании порошкообразных полиолефинов происходит образование аэрозолей и неизбежно накапливание зарядов статического электричества, что может привести к искрообразованию. Транспортирование полиолефинов по трубопроводу производят в атмосфере инертного газа. Для защиты окружающей среды все вентиляционные выбросы из производственных помещений должны подвергаться очистке на специальных установках. Сточные воды при отмывке полиэтилена низкого давления и полипропилена от остатков катализатора и продуктов его распада, а также образующиеся при регенерации промывной жидкости должны подвергаться нейтрализации и тщательной очистке на специальных очистных сооружениях.