Смекни!
smekni.com

Решение задач на экстремум (стр. 12 из 16)

max(7x + 6y) = max (328- x) = 314 , где x≥ 14.

Для получения наибольшей прибыли следует изготовить 14 халатов и 36 пижам.

Задача 2.

Требуется соорудить канал с поперечным сечением ABDC, где АВ=CD, АВ и CD перпендикулярны к BD. Сумма длин АВ, ВD и СD должны быть равной Р метрам.

Спрашивается, какими надо сделать ширину и глубину канала, чтобы площадь его поперечного сечения, т.е. площадь прямоугольника с вершинами в точках А, В, С, D, оказалась бы наибольшей?

Поиски решения. Поскольку мы еще не знаем, какими надо сделать глубину и ширину канала, то естественно обозначить эти переменные какими-либо подходящими буквами. Например, положить АВ = х и BD = у. Далее надо выразить через х и у ту величину, наибольшее значение которой нам надо найти, т.е. площадь сечения канала. Эта площадь выразится произведением ху, т.е. будет зависеть от двух переменных величин х и у. Но наше исследование облегчится, если нам удастся выразить площадь в зависимости только от одной переменной. Очевидно, что в данном случае это сделать легко, т.к. по условию задачи 2х + у = Р.

Решение.

Пусть АВ = х, тогда и CD = х, а BD = P - 2x. Площадь сечения будет равна х (Р - 2х). Задача сводится к определению наибольшего значения функции х (Р - 2х), которая представляет собой многочлен второй степени, имеющий вид -2х2+Рх. Очевидно, что

Отсюда видно, что наибольшая площадь получится в том случае, когда мы сделаем глубину канала х = Р/4. Тогда окажется ширина у равной Р/2, а наибольшая площадь равной Р2/8.

Задача 3.

Найти наибольшее и наименьшее значения функции y = 9x – 2∙3 x на отрезке [-1; 2].

Решение.

Пусть t= 3x. Так как -1 ≤ x ≤ 2, то

, у= t2 – 2t. Таким образом, решение задачи сводится к вычислению наибольшего и наименьшего значений квадратичной функции

у = t2 – 2t на отрезке [

; 9]. Абсцисса t0 вершины параболы, являющейся графиком э той функции , равна 1, ветви параболы направлены вверх. Так как t0 є [
; 9], то miny(t) =y (1) = - 1, а максимальное значение достигается на том конце отрезка, который наиболее удален от t0 , т.е. maxy(t) = y(9) = 63. Если t = 1, то х = 0, если t= 9, то х =2. Поэтому maxy(x) = y(2) = 63, miny(x) = y(0) = - 1.

II уровень сложности.

Задача 1.

Предполагается, что рацион составляется из двух видов кормов - сена и концентратов. В таблице приведены числовые данные о суточной потребности одного животного в питательных веществах и о себестоимости кормов в данном хозяйстве:

Виды кормов Содержание в 1 кг. Кормов кормовых единиц Себестоимость 1 кг(в руб.)
Сено 0,5 1,5
Концентраты 1,0 2,5
Суточная потребность на одного животного 20 -

Требуется найти самый дешевый рацион, если ежедневный рацион кормления сельскохозяйственных животных должен включать не менее 16 кг. сена.

Решение.

Пусть ежедневный рацион кормления состоит из х кг. сена и у кг. концентратов. Тогда ежедневный рацион содержит (0,5 х + у) кормовых единиц, себестоимость которого равна (1,5 х + 2,5 у).

Решение задачи сводится к нахождению min (1,5 х + 2,5 у), если 0,5 х + у =20.

min (1,5 х + 2,5(20 – 0, 5х )) = min (0,25 х + 50) = 54.

Задача 2.

Найти наибольшее значение функции f = х4 (32-х4).

Решение:

Поиски решения.

Данная функция принимает отрицательные значения

при

, а при
- положительные. Поскольку ее наибольшее значение надо искать среди значений х меньших, чем
.

Если мы положим х4 = у, то задача сведется к нахождению наибольшего значения многочлена второй степени, имеющего вид:

- у2 +32у.

Однако если проявить наблюдательность и заметить, что сумма множителей х4 и (32 - х4) является величиной постоянной, то можно воспользоваться теоремой 3 и решить задачу проще.

Задача 3.

Найти наибольшее и наименьшее значения функции у=6

- 2х на отрезке [2 ; 8] .

Решение.

Пусть t =

. Так как 2 ≤ х ≤ 8 , то 1 ≤ t ≤
. При этом 2х = t2 + 3, откуда

y=6 t - t2 –3. Таким образом, решение задачи сводится к вычислению наибольшего и наименьшего значений квадратичной функции на отрезке.

Графиком этой функции является парабола, ветви которой направлены вниз, абсцисса t0 вершины параболы, равна 3. Так как t0 є [1;

] , то maxy(t) =y (3) =6, а наименьшее значение достигается в том из концов отрезка который наиболее удален от t0, т.е.

miny(t) =y (1) = 2.

Если t = 3, то х = 6, если t= 1, то х =2. Поэтому maxy(x) = y(6) = 6, miny(x) = y(2) = 2.

III уровень сложности.

Задача 1.

Завод должен переслать заказчику 1100 деталей. Детали упаковывают в ящики трех видов.6 по 70, 40 и 25 деталей в каждый. Стоимость пересылки одного ящика каждого вида соответственно равна 20 руб., 10 руб. и 7 руб. Сколько ящиков и какого вида должен использовать завод , чтобы стоимость пересылки была наименьшей.

Решение.

Оценим, в каком из ящиков пересылка одной детали будет наиболее дешевой: в первом

руб., во втором
руб., в третьем
руб. Поскольку
<
, то выгоднее пересылать детали в ящиках по 40 штук, менее выгодно- по 25 штук, наименее выгодно – по 70 штук.

Но 1100 деталей в ящики по 40 штук полностью вместить нельзя. Следовательно, необходимо найти максимальное количество деталей, которые можно переслать в ящиках по 40 деталей.

Максимальное количество стоит искать среди чисел, близких к 1100 и кратных 40, т.е. среди чисел, 1080, 1040, 1000 и т.д. Первые два числа не подходят, т.к. останется в первом случае 20, а во втором -60 деталей; в третьем случае останется 100 деталей, которыми можно загрузить 4 ящика по 25 деталей.

Можно подсчитать, что в этом случае затраты на пересылку составят 10 ∙ 25 + 4 ∙ 7 =278 руб. А если, например, отправить 10 ящиков по 70 деталей и 16 ящиков по 25 деталей, то затраты составят 312 руб..

Задача 2.

Найти наименьшее и наибольшее значение функции y=4x+6|x-2|-x2 на отрезке

[-1;3].

Решение:

y=-( x2-4x+4-4)+ 6|x-2|=-(x-2)2 +6|x-2|+4. Так как а2=|а|2, то y=

-|x-2|2+6|x-2|+4. Пусть t=|x-2|. Поскольку -1 ≤ х ≤ 3, то 0 ≤ t ≤ 3. При этом y=-t2+6t+4 возрастает и, следовательно,

miny(t)=y(0)=4, maxy(t)=y(3)=13.

[0;3] [0;3]

Если t=0, то x=2. Если t=3, то |x-2|=3

Но по условию х

[-1;3], поэтому остается только значение х=-1.

Ответ: miny(х)=y(2)=4, maxy(х)=y(-1)=13.

[-1;3] [-1;3]

Задача 3.

Найти наименьшее и наибольшее значения функции у=2sinx – cos 2x +cos2 x.

Решение.

Так как

cos 2x = 1 -2 sin2 x, cos2 x = 1- sin2 x, тоy= sin2 x+ 2 sin x. Пустьt =sin x, -1 ≤ t ≤ 1.

Тогда, решение задачи сводится к вычислению наибольшего и наименьшего значений квадратичной функции на отрезке.

Графиком этой функции является парабола, ветви которой направлены вверх, абсцисса t0 вершины параболы, равна - 1. Так как t0 є [- 1;1] , то maxy(t) =y (1) =3, miny(t) =y (-1) = -1.

Если t = 1, то sinx = 1

x =
. Если t= - 1, то

sin х = -1

n, n
Z. Поэтому maxy(x) = 3, miny(x) = - 1.

Занятие 4

Тема: «Алгебраический подход к решению задач на экстремумы».

Тип: Комбинированный урок.

Цели:

Обучающая: Обучить способу решения экстремальных задач различными аналитическими методами, совершенствование навыков решения экстремальных задач аналитическими методами.

Развивающая: дать возможность учащимся убедится в том, на сколько развиты их возможности и над чем нужно поработать.

Воспитательная: воспитание потребности и умения работать в коллективе для решения совместных задач, активной жизненной позиции, умения ставить и достигать цели.

Задачи: Рассмотреть различные аналитические методы решения экстремальных задач, и их применение при решении конкретных задач; закрепление умений и навыков решения экстремальных задач аналитическими методами.

Оборудование: доска, мел, карточки с заданиями.

План урока

Содержание Методы и приемы Время
1.Орг. моментСообщение цели урока Инструктаж учителя 3 мин
2.Изучение новогоматериала1.Суть метода.2.Пример решениязадачи cиспользованиемнеравенств. Лекция (объяснительно-иллюстра–тивный с элементамипроблемного изложения)Учащиеся конспектируют, задают вопросы. 20 мин
3.Закрепление пройденного материала. Учитель предлагаетучащимся задачи длясамостоятельного решения.Учащиеся самостоятельнорешают задачи своегоуровня сложности(репродуктивный, частично-поисковый) 31 мин
4.Подведение итогов беседа 2 мин
5.Запись домашнего задания Инструкция учителя(репродуктивный) 4 мин

Ход урока: