Смекни!
smekni.com

Обобщения при обучении решению математических задач (стр. 3 из 12)

Часто учащиеся выясняют метод решения задач определенного класса на основе анализа одной-двух задач. При этом способные к математике школьники значительную часть времени затрачивают не столько на анализ условия задачи, сколько на анализ требования. Благодаря такому анализу они могут решать одну и ту же задачу разными способами. Переход от одного способа к другому, свободная ориентация в материале, свидетельствуют о его обобщенности.

«Анализ при решении задачи включает в себя несколько составляющих: составно-структурную, функциональную, генетическую, которые раскрываются в определенной последовательности». [20, с. 61] Составно-структурная составляющая анализа предполагает ответы на вопросы: из каких элементов, подзадач, блоков образована задача? Что они собой представляют? Оптимален ли набор элементов? Эта составляющая заключается в том, чтобы выяснить внутреннюю структуру, организацию задачи как системы, определить способ, характер связей и отношений элементов ее составляющих. Функциональная – в раскрытии механизма внутреннего функционирования задачной системы. Генетическая – в исследовании происхождения задачи, процесса ее формирования и развития.

Весьма важной при проведении обобщений является генетическая составляющая анализа. Ведь гораздо легче воспринять знание, проследив его возникновение, нежели чем когда оно дано как факт.

Пример1. задачу на вычисление площади треугольника подобного данному с известной площадью, если известен коэффициент подобия можно обобщить до класса задач на вычисление площади многоугольника подобного данному с известной площадью, если известен коэффициент подобия. При этом используется формула отношения площадей подобных треугольников:

. Тогда, анализируя задачу, когда S1 и S2 – площади треугольников, можно сделать обобщение, когда S1 и S2 – площади многоугольников. Это обобщение, в свою очередь, может быть рассмотрено для конкретных многоугольников.

Составно-структурная составляющая проявляется в анализе структуры задачи и ее решения.

При помощи функциональной составляющей анализа можно выделять общее не только в задачах и их решениях, но и в мыслительной деятельности при решении задач. Д. Пойа в работе «Как решать задачу» [30] разработал методику решения задач по математике, представив ее в виде таблицы советов решающему математическую задачу. Советы носят организационно-эвристический характер, направленный на оптимальное стимулирование мышления к достижению поставленной в задаче цели.

Таким образом, сравнение и анализ являются обязательными условиями всякого обобщения. Эффективность осуществления обобщений зависит от умения проводить анализ задачи. При проведении анализа задачи, выявляется общее как в задачах и их решениях, так и в мыслительной деятельности.

1.4 Обобщения по аналогии при обучении решению задач

«Случаи, в которых применима аналогия, неисчерпаемы по своему разнообразию», – говорит Д. Пойа [32].

Аналогия является хорошим источником новых фактов и задач.

Д.П. Горский утверждает, что аналогия необходима для «получения нового знания, чтобы менее понятное сделать более понятным, представить абстрактное в доступной форме, конкретизировать отвлеченные идеи». Так же аналогия может служить «средством выдвижения новых гипотез, являться методом решения задач путем сведения их к ранее решенным задачам и т.п.» [8, с. 14].

Обобщения по аналогии используются для движения мысли от общности одних свойств и отношений у сравниваемых предметов к общности других свойств и отношений.

Часто аналогии скрываются в кажущихся различиях. Обнаружение таких скрытых аналогий между закономерностями, которые ранее рассматривались отдельно и не считались связными, является «одним из самых приятных моментов математического творчества» [35, с. 110]. Эвристическая ценность данного подхода заключается, в том, что происходит сближение различных, казалось бы изначально отдаленных, предметных областей математики.

Д. Пойа в книге «Математика и правдоподобные рассуждения» рассматривает использование аналогии при решении задач. Иногда можно почти копировать решение близкой, родственной задачи. В более сложных случаях аналогия может подсказать направление, в котором следует продолжать работу по решению задачи. Аналогии полезны как в понимании задачи и ее решения, так и в отыскании решения. С помощью аналогии могут быть подсказаны или сделаны более ясными общий план или значительные части решения.

Часто задачи, аналогичные по содержанию, аналогичны и по методу решения. Поэтому задачу, аналогичную по содержанию данной, легко можно решить тем же методом, а решение задачи, аналогичной данной, но более общей, может привести к открытию нового общего метода решения класса задач.

Д. Пойа предлагает следующий алгоритм, который может быть применен для решения сложных задач: для начала следует выделить аналогичную, более легкую задачу, решить ее, затем переделать ее решение так, чтобы оно могло служить в качестве модели для первоначальной задачи, и наконец, добиться решения первоначальной задачи, следуя только что созданной модели.

Рассмотрим примеры 2 и 3:

Пример 2.Зная стороны а, b, с треугольника ABC, вычислите радиус r1 вневписанной окружности, касающейся стороны ВС и продолжений сторон АВ и АС.

Для задачи аналогичной более общей будет следующая задача:

Пример 3.Зная стороны а, b, с треугольника ABC, вычислить радиус r вписанной окружности.

Решение этой задачи рационально разбить на отдельные простейшие «шаги», после чего аналогия будет легко заметна. Решение исходной задачи (пример 2) можно получить по аналогиис решением задачи (пример 3). Для этого достаточно провести аналогию на каждом «шаге» решения [3].

В математике выделяются основные аналогии, которые часто используются при обучении решению задач: аналогии между планиметрией и стереометрией, аналогии между числами и фигурами, аналогии между бесконечным и конечным, аналогии между природой и математикой [32].

Таким образом, аналогия имеет широкое применение при обучении решению задач. С помощью аналогии осуществляется связь планиметрии и стереометрии, чисел и фигур и другие. Часто для решения сложной задачи удобно использовать решение более простой аналогичной задачи. Так же аналогия может подсказать направление, в котором следует продолжать работу по решению задачи, сделать более ясными общий план или значительные части решения. Задачу, аналогичную данной по содержанию, легко можно решить тем же методом. Решение задачи, аналогичной данной, но более общей, может привести к открытию нового общего метода решения класса задач.

1.5 Индуктивные обобщения при обучении решению задач

Индукция представляет собой метод рассуждений от частного к общему, вывод заключения из частных посылок [22]. Индуктивные обобщения играют большую роль в получении обобщенного знания и являются одним из важных эвристических приемов [3].

При отыскании математических закономерностей, при нахождении способа решения разнообразных математических задач индуктивное обобщение проявляется в умении наблюдать и выявлять общее. Метод рассуждений, где после наблюдения за серией частных случаев формулируется общее предложение, называется неполной индукцией.

Пример 4. «Доказать, что произведение трех любых последовательных натуральных чисел делится на 6» [43, с. 79].

1) Рассмотрим серию частных случаев:

1*2*3=6 (делится на 6)

2*3*4=24 (делится на 6)

3*4*5=60 (делится на 6)

2) Сформулируем предположение: числа 6, 24, 60 делятся на 6, значит произведение трех любых последовательных натуральных чисел может делиться на 6.

3) Испытаем предположение для другого частного случая: 13*14*15=2730 (=455*6 т.е. делится на 6).

Так как предположение подтвердилось, то можно сформулировать индуктивный вывод: произведение трех любых последовательных натуральных чисел делится на 6.

4) Проведем доказательство предположения: пусть k– произвольное натуральное число.

Возможны три случая:

1. Первое число равно 3*k, то есть кратно трем, тогда из двух последующих одно обязательно четное. Значит, произведение делится на 6.

2. Последнее число равно 3*k, то есть кратно трем, тогда из двух предыдущих одно обязательно четное. Значит, произведение делится на 6.

3. Среднее число равно 3*k.

Тогда: (3*k– 1)* 3*k *(3*k + 1) = 3*k *(9*k2 – 1)

Далее возможны два случая:

k = 2*p. Предложение доказано.

k=2*p + 1.

Имеем: 3*k *(9*k2 – 1) = 3*[9*(2*p +1)2 – 1]*(2*p + 1)

Так как множитель в квадратных скобках – четное число, то все произведение делится на 6.

Таким образом, предложение доказано полностью: произведение трех любых последовательных натуральных чисел делится на 6.

Д. Пойа утверждает, что индуктивное обобщение может являться также методом решения математических задач [32]. Рассматривается самый простой частный случай, когда задача решается легко. Решив эту задачу, обобщают ее на другой более общий, но все же частный случай, используя в решении результат предыдущей задачи. Так доходят до общей данной задачи.

В процессе обучения математике индукция очень тесно связана с дедукцией. Особенно ярко взаимосвязь индукции и дедукции просматривается при решении задач методами полной и математической индукции.