регистрация /  вход

Методика математического развития (стр. 1 из 3)

Министерство образования РФ

Автономное учреждение среднего профессионального образования

Ханты-Мансийского автономного округа-Югры

«ХАНТЫ-МАНСТИЙСКИЙ ТЕХНОЛОГО– ПЕДАГОГИЧЕСКИЙ КОЛЛЕДЖ» (филиал)

КОНТРОЛЬНАЯ РАБОТА

по курсу: Методика математического развития

Выполнила:

студентка группы 821-«3»

4 курса, заочного отделения

Морозова Н.А.

Проверил:

Окотэтто Зоя Степановна

г. Советский

2010г.

План

1.1 Обосновать возрастающую роль математических знаний в современном обществе.………………..………………………………………...3

3.21 Особенности и свойства величины как признака предметов, освоение ее дошкольниками…….……………………………………………..6

7.39 Подобрать и описать дидактические игры на закрепление знаний о независимости числа от расстояния между предметами, от величины предмета, формы расположения предмета ……..…………………………..16

Список литературы…………………………………………………………….18

1.1 Обосновать возрастающую роль математических знаний в современном обществе

Современное российское общество все больше приобретает черты общества информационного, характерной особенностью которого является

увеличение роли информации и знаний, увеличение роли человека, как их носителя.

Математика в современном мире проникла во все сферы общественной жизни. Овладение практически любой современной профессией требует тех или иных знаний по математике. С математикой связана компьютерная грамотность и экономическая деятельность, все более увеличивается ее роль и в гуманитарных науках, не говоря уже о роли математики в естественных дисциплинах и, вообще, в научно-техническом прогрессе.

Математические знания, представления о роли математики в современном мире стали необходимыми элементами общей культуры. В школе и в большинстве высших учебных заведениях математика является опорной дисциплиной, обеспечивающей изучение на современном уровне ряда других дисциплин, как естественных, так и гуманитарных.

Понятие развития математических способностей включает взаимосвязанные и взаимообусловленные представления о пространстве, форме, величине, времени, количестве, их свойствах и отношениях, которые необходимы для формирования в процессе овладения и выполнения тех видов деятельности, для которых они необходимы.

Главные составляющие воздействия математического обучения на формирующуюся личность заключаются в том, что:

во-первых, решение математических заданий (задач) формирует рациональный (или доказательный) стиль мышления и одновременно диагностирует достигнутый его уровень;

во–вторых, изучение математики позволяет освоить важнейшие мыслительные операции: анализ, синтез, сравнение, обобщение, систематизацию, являющиеся основой высшей формы мышления – абстрактного мышления;

в-третьих, математика, как и другие науки, обладает мощнейшим воспитательным потенциалом – на занятиях математикой развиваются волевые качества личности, самостоятельность мышления, навыки самоконтроля.

Занятия математикой, решение математических задач требуют от обучаемого внимательности к мышлению и, тем самым, способствуют обретению доверия к собственному мышлению, или уверенности в собственном мышлении.

В информационном обществе на первый план выходит развивающая

функция математического образования. Теперь важно осваивать, изучать

математические объекты, факты, теории и методы не столько для дальнейшего их использования в решении стандартных задач (большинству

это не понадобится в их профессиональной деятельности), сколько с целью

активации основных мыслительных компонент индивидуальности, приобретения личностью качеств самостоятельного мышления, незаменимых

при оценке нестандартных ситуаций и поиске решений незнакомых, новых

задач, развития способности личности гибко использовать эти качества мышления в различных и меняющихся условиях.

Таким образом, математика играет важную роль в естественнонаучных, инженерно-технических и гуманитарных исследованиях. Причина проникновения математики в различные отрасли знаний заключается в том, что она предлагает весьма четкие модели для изучения окружающей действительности в отличие от менее общих и более расплывчатых моделей, предлагаемых другими науками. Без современной математики с ее развитым логическими и вычислительным аппаратом был бы невозможен прогресс в различных областях человеческой деятельности.

3.21 Особенности и свойства величины как признака предметов, освоение ее дошкольниками

Дети младшей группы пока не могут самостоятельно выделять в предметах свойства. Все различия вещей по размерам они характеризуют словами большой или маленький, т. е. словами, которые используют для обозначения соотношений вещей по объему в целом, не пользуются словами, позволяющими дать точную характеристику различия предметов по 1 из признаков.

Поэтому необходимо научить малышей сравнивать предметы, отличающиеся только по 1 признаку (или по длине, или по ширине, или по высоте), и пользоваться точными словами для обозначения соотношений предметов по размерам: длиннее, короче, одинаковые (равные) по длине; выше, ниже, одинаковые (равные) по высоте; шире, уже, одинаковые (равные) по ширине; толще, тоньше, одинаковые (равные) по толщине. Сравнению каждого вида размеров (длины, ширины, высоты) отводится 3—4 занятия.

При первичном выделении того или иного признака сопоставляются предметы, отличающиеся только данным признаком. Например, для того чтобы дать детям понятия «длиннее — короче», подбирают вещи одинакового цвета, равные по ширине и толщине, отличающиеся одна от другой только длиной. В противном случае нельзя быть уверенным в том, что малыши свяжут новые для них слова с соответствующими свойствами предметов.

Для сравнения вначале используют предметы контрастных размеров. Разница в размерах демонстрационного материала — не менее 10—15 см, раздаточного — не менее 5 см. При сравнении предметы располагаются так, чтобы сравниваемый размер был хорошо виден. Например, когда сравнивается толщина предметов, их помещают основанием к детям (первоначально сравнивается толщина округлых предметов). Обращаясь к детям, педагог точно формулирует вопросы и пользуется словами размер, длина, ширина и др.

Выделить отдельные измерения помогает жест рукой. Спрашивая детей о том, какой предмет длиннее (короче), педагог одновременно проводит рукой вдоль предмета (слева направо). Сравнивая ширину, он проводит рукой поперек предмета (по ширине), а при сравнении высоты — снизу вверх, от основания до верхнего края предмета. Показ производится широким жестом, повторяется 2—3 раза, чтобы дети данный признак не соотнесли с какой-либо линией на предмете или с одним из краев предмета.

Толщина сравнивается путем обхвата предметов пальцами обеих рук или одной руки. Подражая педагогу, дети производят соответствующие действия. Выделению данных признаков способствует создание игровых ситуаций, в которых успех того или иного действия связан со степенью выраженности данного признака и требует его учета. Например, воспитатель предлагает ребенку прокатить машину по широкому и узкому мостику и задает вопросы: «Почему по одному мостику машина проехала, а по другому нет? В какие ворота машина пройдет, а в какие нет? Почему?»

Большое значение придается обучению детей способом сравнения размеров: приложению или наложению (о которых им уже известно). Вначале малышей учат пользоваться способом приложения, так как сопоставляются одноцветные предметы и при наложении они сливаются. Воспитатель показывает, как правильно пользоваться данными способами.

Сравнивая длину, вещи кладут рядом и подравнивают их концы с одной стороны (лучше с левой); пользуясь наложением, совмещают также верхние и нижние их края. Если конец предмета выступает, можно сказать, что этот предмет длиннее. Если ни один конец не выступает, то предметы равные (одинаковые) по длине. При сравнении вещей по ширине совмещают (подравнивают) верхние или нижние их края; сравнивая высоту, предметы ставят рядом на одну плоскость. Выделенный признак обозначается точным словом. «Какая ленточка длиннее (шире) ? Какая ленточка короче (уже) ?» — спрашивает воспитатель, побуждая детей к употреблению слов длиннее - короче, шире — уже и др., обозначающих сравнительную величину предметов. Разъясняя их значение, воспитатель, например, говорит: «Видите, дети, часть этой дощечки выступает, значит, она шире этой (показывает). А у этой дощечки не хватает кусочка, значит, она уже». Новые слова выделяются интонацией, дети все вместе (хором) их повторяют. Варьируя вопросы и задания, педагог обеспечивает включение новых слов в активный словарь детей. Он дает им образец ответа, например: «Красная ленточка шире зеленой, а зеленая уже красно»». Так постепенно приучают детей называть оба сравниваемых предмета.

Если ребенок вместо точных слов длиннее (короче), шире (уже) и др. употребляет слова больше, меньше, педагог его поправляет: «Правильно, больше по длине (по ширине), длиннее (шире)». Или: «Правильно, меньше по длине (по ширине), короче (уже)». Отношения «длиннее — короче», «шире — уже» всегда рассматриваются в связи друг с другом. Например: «Синий шарфик уже красного, а красный шарфик шире синего».

С самого начала тщательно отрабатываются умения пользоваться способами наложения и приложения. Для того чтобы дети действовали осознанно, педагог задает им вопросы: «Что надо сделать, чтобы узнать? Что ты делаешь? Как прикладываешь?»

Для закрепления знаний используются разнообразные упражнения. Например, предлагают посмотреть, какая полоска короче (уже), и поставить на нее одну уточку, а после посмотреть, какая полоска длиннее (шире), и поставить на нее много уточек. Если вначале им дают одноцветные предметы, то в дальнейшем, по мере усвоения знаний, можно предлагать предметы разного цвета. Теперь, сравнивая размеры предметов, детям приходится отвлекаться от других их признаков. Этим достигается элементарное обобщение знаний. Сопоставление предметов контрастных размеров позволяет научить детей более расчлененно воспринимать размеры предметов и давать им соответствующие определения («длиннее — короче», «выше — ниже» и др.).

Узнать стоимость написания работы
Оставьте заявку, и в течение 5 минут на почту вам станут поступать предложения!