Смекни!
smekni.com

Разработка логической схемы управления двустворчатых ворот судоходного шлюза (стр. 9 из 14)

где Мнп - начальный пусковой момент двигателя;

J'2 - приведенный к валу двигателя момент инерции створки и при­соединенной массы воды;

w - частота собственных колебаний системы

Максимальное значение динамического момента будет при coswt = -1; Учитывая, что этот максимальный момент не должен превышать больше чем на 40 %, момент сопротивления Мс', т. е. М12 =1,4*Мс', величина начального пускового момента при пуске из лю­бого положения определяется по формуле:

Мнп(Q) = Мс'(Q)*(1+0,2*J1+J'2(Q)/J'2); где

J'2(Q) = Jст+Jв(Q)/i2(Q) - приведенный к валу двигателя момент инерции створки и присоединенной массы воды.

Jст = G*l2/38 - момент инерции створки;

Jст = 2676137,5 (кг*м2)

Jвт(Q) - момент инерции присоединенной массы воды при hкт = 18м и hк = 4м

Пересчет для Jв(Q) производится по формуле:

Jв(Q) = Jвт(Q)*h/hк*(hк/hкт)4 = 1,25*Jвт(Q)

Результат вычислений заносим в таблицу.

Q; град 0 10 20 30 40 50 60 70
Jвт107кг*м2 4,2 2,2 1,85 1,75 1,8 2 2,6 4,2
Jв107кг*м2 5,25 2,75 2,3 2,2 2,25 2,5 3,25 5,25
J'2кг*м2 0,38 1,15 1,39 1,58 1,69 1,65 1,49 0,52
МнпН*м 19,5 44,6 58,9 70,2 77,7 220,8 191 130,1

Вычисляем Мнп только для двигательного режима, т. к. соответс­твующая Мс' для тормозного режима меньше, чем для двигательного. По данным таблицы строим график Мнп= f(Q) ( рис. 21) из таблицы нахо­дим Мнп max = 220,8 ( Н*м ).

Выполняет проверку по условию:

Мнп мах , 0,8*Mmax, где

0,8 - коэффициент, учитывающий допустимое снижение напряжения сети:

2,5*132,9 = 332,25 . 220,8 следовательно, Мнп max , 2,5*Мном, условие выполнено.

2.3.6.Выбор электрических аппаратов для управления механическими тормозами.

На всех механизмах шлюза для удержания его в застопаренном сос­тоянии в период бездействия или для замедления движения механизма перед его остановкой используются механические тормоза.Они выполня­ются непосредственно с электроприводом. В качестве электроприводов (аппаратов) для управления механическими тормозами используются электрогидравлические толкатели и электромагниты переменного и пос­тоянного тока.

Выбор механического тормоза,а следовательно,и его электропривода производится по необходимому тормозному режиму:

Мт = 2*М'max

Для нахождения М'max необходимо из графика M'с = f(Q) при пере­паде и ,сопутствующих движению выбрать наибольшее значение момента по абсолютной величине

М'max = 172,5 ( Н*м )

Мт = 2*172,5 = 345 (Н*м)

Выбираем длинноходовой тормозной электромагнит переменного тока КМТЗА.

Тяговое условие-350(Н).

Эти электромагниты применяются в беспружинных тормозах с высокой степенью надежности торможения,но для механизмов с небольшим числом включений в час.

Длинноходовые электромагниты переменного тока имеют прямоходовую конструкцию с Ш-образным шлихтованным магнитопроводом на котором расположены три катушки, включенные в "звезду" или "треугольником".

Электромагниты этого типа выпускаются серии КМТ четырех типов размеров на напряжение 220\380В и 500В.

2.3.7.Расчет резисторов пускового реостата и выбор ящиков сопро­тивлений.

Величины сопротивления, введенных в цепь ротора двигателя в оп­ределенном масштабе могут быть получены из пусковой диаграм­мы(рис.22)

Принято:Ip = 51(А)

Iпер = 54(А)

Iп = 102(А)

Из диаграммы истекает:двигатель имеет 3 степени разгона.

Активное сопротивление фазы ротора:

rp = Uн.*S/(?3*Iр.) = 172*0,065/(?3*51) = 0,127 ( Ом )

где: Uн.р. = 172 (В), Iр.н. = 51 (А); S = no-n/no = 0,065

Маштаб сопротивлений: m = rp/аб = 0,127/7 = 0,018 (Ом/мм)

Сопротивления ступеней;

R1 = m*де = 0,018*46 = 0,828 (Ом)

R2 = m*д2 = 0,018*25 = 0,45 (Ом)

R3 = m*2в = 0,018*14 = 0,252 (Ом)

Rневыкл = m*вб = 0,018*8 = 0,144 (Ом)

Наимено-ваниеступени Обозн-ачение Расчетноесопротив-ление( Ом ) Технические данные Кол-восопрот-ивлений Факти-ческоесопро-тивле-ние( Ом )
сопроти-влениеэл-та( Ом ) Длитель-ный доп-устимыйток (А)
1 R1 0,828 0,4 64 2 0,8
2 R2 0,45 0,156 82 3 0,468
3 R3 0,252 0,079 114 3 0,237
не выключ Rневыкл 0,144 0,089 114 2 0,158

Схема соединения резисторов для одной фазы ротора двигателя на ( рисунке 13 )

Пускорегулировачные резисторы серии НФ представляют собой ящики открытого исполнения. В этих элементах применяются сопротивления на фехралевой ленте, намотанной на ребро. Внешние зажимы ящиков сопро­тивления не маркированы. Расположение ящиков должно исключать воз­можность случайного прикосновения к ним и обеспечить защиту от ат­мосферных осадков.

3. ОПИСАНИЕ СУЩЕСТВУЮЩИХ СХЕМ УПРАВЛЕНИЯ

Привод двустворчатых ворот. Наибольшее распространение на шлюзах нашей страны получили плоские, двустворчатые ворота. Основное тех­нологическое требование здесь сводится к правильному и безударному створению полотнищ. Для привода двустворчатых ворот на правом и ле­вом устоях камеры устанавливают по механизму, приводимому во враще­ние сворим электродвигателем.

Привод с асинхронными двигателями без регулирования скорости движения. В нем могут быть использованы асинхронные двигатели ка с фазным, так и с короткозамкнутым ротором. Структурная схема такого привода дана на (рисунке 23), а. Система отличается простотой и вы­сокой надежностью. Однако она обладает таким серьезным недостатком, как тяжелое протекание переходных процессов и невозможность управ­ления частотой вращения двигателей при створении ворот и входе их полотнищ в ниши.

Привод с асинхронными фазными двигателями с регулированием ско­рости движения изменением сопротивления цепи ротора.Этот широко применяемый на шлюзах приводах двустворчатых ворот отличается от предыдущего возможностью регулирования частоты вращения двигателей при маневрировании воротами и управлением в процессе разгона при пуске двигателей в ход. Структурная схема системы привода показана на (рисунке 23).

Такая система,используется в большинстве случаев в сочетании с кривошипно-шатунным механизмом, имеет очень тяжелую динамику при пуске из промежуточных положений, необходимость которого нередко возникает,например, из-за недостаточной согласованности скоростей движения створок ворот, различия продолжительности разгона двигате­лей при реостатном пуске и т. п. В случае применения других типов тяговых органов ( например, тросовых ) положение усугубляется еще тем, что в конце операций получаются недопустимо большие скорости движения створок и для исключения ударов возникает потребность в искусственном снижении частоты вращения двигателей.

Электропривод с тормозными генераторами. Привод двустворчатых ворот, рассмотренный выше, в операции закрытия работает на смягчен­ных характеристиках и в результате колебаний скорости движения не обеспечивает правильного створения ворот при различных изменениях нагрузки на левую и правую створки от ветра и волн. Кроме того, из-за сравнительно высокой скорости движения створок в конце опера­ции закрытия при наложении тормозов раньше времени в воротах оста­ется большая щель, а при наложении с опозданием получается удар створок.

Устранение отмеченных недостатков возможно при работе привода в течении большей части операции на жестких механических характерис­тиках, обеспечивающих сохранение скорости движении створок при ко­лебаниях нагрузки, и со значительным уменьшении скорости движения в конце операции перед наложением тормозов. Такие характеристики мож­но получить в системе с тормозным генераторами, включаемыми в конце операции для получении малой скорости движения . Тормозной генера­тор может быть отдельной электрической машиной постоянного или пе­ременного тока, навешанной на вал приводного двигателя и являющейся для него дополнительной нагрузкой.

Механическая характеристика системы с включенным генератором представляет собой кривую, полученную при различных частотах враще­ния сложения моментов приводного двигателя и тормозного генератора. Структурная схема такого привода дана на . На схеме показаны при­водные двигатели М1, М2, резисторы роторных цепей R1,R2 и тормозные генераторы ТГ1 и ТГ2. Изменением сопротивления цепи ротора асинх­ронного двигателя или тока возбуждения тормозного генератора полу­чают различные по жесткости и по граничной частоте вращения харак­теристики системы.

Электропривод двустворчатых ворот с тормозным генератором на шлюзах пока применяют ограниченно из-за большого числа машин, а значит, увеличенных габаритов и массы установки.

Электропривод с гидравлической передачей.Для привода двустворча­тых ворот гидропередачи стали применять в последнее десятилетие. Электрогидроприводы располагают на устоях камеры шлюза. Они предс­тавляют собой два самостоятельных агрегата, связанных с помощью системы управления. Структурная схема электрогидропривода двуствор­чатых ворот приведена на рисунке 7, г. К основным его элементам от­носятся: насосы Н1 и Н2 с приводными двигателями М1 и М2, золотни­ковые блоки управления З1, З2 и силовые гидроцилиндры Ц1, Ц2, штор­ки которых соединены со створками ворот. Регулирование скорости движения здесь также гидростатическое, с перепуском части рабочей жидкости в сливной бак Б1 или Б2 минуя гидроцилиндры. Электрогид­роприводы двустворчатых ворот зарекомендовали себя хорошо, однако необходимо решить еще целый ряд вопросов по улучшению регулирования скорости движения, динамики и защиты системы.