регистрация /  вход

Анализ систем автоматического регулирования температуры поливной воды в теплице (стр. 1 из 4)

Министерство сельского хозяйства и продовольствия Республики Беларусь

Белорусский Государственный Аграрный Технический

Университет

Кафедра автоматизированных систем управления производством

Курсовая работа

По "Основам автоматики"

Анализ систем автоматического регулирования температуры поливной воды в теплице

Руководитель Гагаков Ю.В

Студента гр. 31а Маркус А.С.

Минск-2008г.


СОДЕРЖАНИЕ

Введение

1. Характеристика объекта управления, описание устройства и работы системы САР, составление ее функциональной схемы. Принцип автоматического управления и вид системы

2. Составление структурной схемы системы

3. Определение закона регулирования системы

4. Определение передаточных функций системы по управляющему и возмущающему воздействиям для ошибок по этим воздействиям

5. Анализ устойчивости системы. Определение запасов устойчивости

6. Анализ зависимости статической ошибки системы от изменения управляющего воздействия на систему

7. Совместный анализ изменения управляемой величины объекта управления и системы от возмущающего воздействия в статике. Определение статической ошибки системы по возмущающему воздействию

8. Оценка качества управления по переходным функциям

9. Общие выводы по работе

Литература

ВВЕДЕНИЕ

Цель работы: закрепление базовых данных и знаний по курсу "Основы автоматики" на примере проведенных анализов системы автоматического регулирования.

Задание:

1. Дать краткую характеристику объекта управления, описать устройство и работу системы, составить ее функциональную схему. Сделать вывод о принципе автоматического управления, использованном в системе и виде системы.

2. Составить структурную схему системы.

3. Определить закон регулирования системы.

4. Определить передаточные функции системы по управляющему (задающему), возмущающему воздействиям и для ошибок по этим воздействиям.

5. Выполнить анализ устойчивости системы по критериям Гурвица и Найквиста. Определить запас устойчивости.

6. Проанализировать зависимость статической ошибки системы от изменения управляющего (задающего) воздействия на систему. Сделать вывод о характере этой зависимости.

7. Провести совместный анализ изменения управляемой (регулируемой) величины объекта управления и системы от возмущающего воздействия в статике. Дать их сравнительную оценку. Определить статическую ошибку системы по возмущающему воздействию.

8. Оценить качество регулирования по переходным функциям.

9. Сделать общие выводы по работе.

Исходные данные: Схема №19;

К1 =50; К2 =1; Т1 =50 с; Кд =0,2; Тд =3 с;

Ку =40; Кдв =0,01; Кр =0,2; Кв =0,9; Кп =2; Тдв =0,5 с;

1. ХАРАКТЕРИСТИКА ОБЪЕКТА УПРАВЛЕНИЯ, ОПИСАНИЕ УСТРОЙСТВА И РАБОТЫ СИСТЕМЫ САР, СОСТАВЛЕНИЕ ЕЕ ФУНКЦИОНАЛЬНОЙ СХЕМЫ. ПРИНЦИП АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ И ВИД СИСТЕМЫ

Рисунок 1.1. САР температуры поливной воды в теплице.

Объектом управления (ОУ) рассматриваемой САР является скоростной водонагреватель. Регулируемой величиной является температура поливной воды Θ. Целью управления является постоянное поддержание температуры поливной воды на заданном уровне. Управляющим воздействием на ОУ является расход горячей воды протекающей через скоростной водонагреватель Qв . Основное возмущающее воздействие – колебание расхода поливной воды, изменение температуры холодной воды поступающей из котельной Θх .

Датчиком (Д) является термометр сопротивления совместно с измерительным блоком. Входной сигнал для датчика – температура поливной воды Θ , выходной сигнал – величина напряжение Uд .

Задатчиком является сопротивление R1 . Задающий сигнал – это величина сопротивления R1 , которое в определенном масштабе соответствует заданному значению температуры Θз в помещении.

Дифференциальный усилитель (ДУ) выполняет функции устройства сравнения (вычитания) входных сигналов и усиления их разности. На вход усилителя поступают напряжения Uд , Uз и напряжение Uос устройства местной обратной связи. Выходной сигнал усилителя - Напряжение Uу , подаваемое на электродвигатель.

Исполнительное устройство представляет собой исполнительный механизм, который состоит из электродвигателя и редуктора. Входной сигнал для электродвигателя – напряжение U у , выходной сигнал – угол поворота φд вала электродвигателя. Входной сигнал для редуктора -φд, выходной сигнал - угол поворота валаφр редуктора.

Устройство местной обратной связи (УОС) выполнено в виде потенциометрического датчика перемещения, подвижный контакт которого механически связан с выходным валом редуктора. Входной сигнал УОС – угол поворота φр , выходной сигнал – напряжениеUос .

Регулирующим органом (РО) является регулирующий вентиль для жидкостей. Входной сигнал – угол поворота φр , выходной сигнал – расход жидкости через вентиль Q в .

На основании вышеизложенного функциональная схема системы составлена следующим образом:

Рисунок 1.2 Функциональная схема системы.

Система работает следующим образом:

В установившемся режиме при равенстве температуры Θ в водонагревателе заданной Θз выходное напряжение дифференциального усилителя U м равно 0. При отклонении температуры в водонагревателе от заданной, например, вследствие изменения расхода воды Q , сопротивление датчика RΘ изменяется, и через измерительный блок меняет напряжение на входе в дифференциальный усилитель. Напряжение Uy , являющееся сигналом возникшей ошибки системы, усиливается усилителем и подается на электродвигатель. Двигатель через редуктор открывает заслонку в нужную сторону, тем самым изменяя расход воды проходящей через водонагреватель. Если температура воды ниже заданной, то угол поворота заслонки увеличивается, если температура выше заданной, то угол поворота заслонки уменьшается. Одновременно выходной вал редуктора перемещает подвижный контакт потенциометрического датчика местной обратной связи, выходное напряжение U ос которого подается на дифференциальный усилитель. Усилитель усиливает разность напряжений U д , U з и U ос . За счет местной обратной связи обеспечивается пропорциональная зависимость между напряжением U д и углом поворота вала редуктора. Поэтому изменение расхода воды пропорционально величине отклонения температуры воды от заданного значения.

При непрерывном изменении температуры поливной воды процесс регулирования идет непрерывно. Если температура установиться, то при правильно подобранных параметрах регулятора процесс регулирования через некоторое время закончиться и вся система придет в новое установившиеся состояние.

В результате рассмотрения устройства и работы системы можно сделать следующие выводы:

В системе реализован принцип управления по отклонению (ошибке).

Система является стабилизирующей.

2. СОСТАВЛЕНИЕ СТРУКТУРНОЙ СХЕМЫ СИСТЕМЫ

Структурной схемой называется наглядное графическое изображение математической модели (математического описания) системы.

На структурной схеме каждое звено изображается прямоугольником, внутри которого записывается математическое описание звена. Связи между звеньями структурной схемы изображаются линиями со стрелками, соответствующие направлению прохождения сигналов. Над линиями ставятся обозначения сигналов. Составим структурную схему САР температуры поливной воды в теплице. Для этого получим передаточные функции всех элементов системы:

1.Уравнение скоростного водонагревателя, как объекта управления:

где Θ – температура поливной воды, о С;

Q в – расход воды проходящей через, водонагреватель, м3 /ч;

Θх – температура холодной воды, о С;

Изображение Лапласа этого уравнения:

Согласно принципу суперпозиции изменение выходной величины такого звена равно сумме изменений выходных величин по каждому воздействию.

Передаточная функция по управляющему воздействию.


,

Передаточная функция по возмущающему воздействию:

,

Аналогичным образом получим передаточные функции остальных элементов системы:

2. Датчик (термометр сопротивления c измерительным блоком):

,

где Θ – измеряемая температура, о С;

Uд – напряжение на выходе измерительного блока, Ом;

,

3. Задатчик: