Смекни!
smekni.com

Железоуглеродистые сплавы. Медь и ее сплавы (стр. 1 из 7)

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Санкт-Петербургский государственный университет сервиса и экономики

Кировский филиал

Курсовая работа

по курсу: «Материаловедение»

Выполнил:

студент второго курса

очного отделения

по специальности 100101(У)

Быков Р.И.

Киров 2008г.


Содержание

1. Железоуглеродистые сплавы. Производство чугуна и доменный процесс

1.1 Железоуглеродистые сплавы

1.1.1 Фазовые состояния

1.1.2 Строение железоуглеродистых сплавов

1.1.3 Полиморфные превращения железоуглеродистых сплавов

1.2 Производство чугуна и доменный процесс

1.2.1 Доменный процесс

1.2.2 Продукты доменной плавки

2. Термическая обработка железоуглеродистых сплавов

2.1Превращения в стали при нагревании

2.2 Превращения в стали при охлаждении

2.3 Основные виды термической обработки стали

2.3.1 Отжиг стали

2.3.2 Закалка стали

2.3.3 Отпуск стали

3. Медь и её сплавы. Область применения

3.1 Физические свойства

3.2 Химические свойства

3.2.1 Отношение к кислороду

3.2.2 Взаимодействие с водой

3.2.3 Взаимодействие с кислотами

3.2.4 Отношение к галогенам и некоторым другим неметаллам

3.2.5 Оксид меди

3.2.6 Гидроксиды меди

3.2.7 Сульфаты

3.2.8 Карбонаты

3.2.9 Качественные реакции на ионы меди

3.3 Сплавы

3.3.1 Латуни

3.3.2 Бронзы

3.3.3 Медноникелевые сплавы

3.4 Применение меди

Список использованных источников


1. Железоуглеродистые сплавы. Производство чугуна и Доменный процесс

1.1 Железоуглеродистые сплавы

Железоуглеродистые сплавы, сплавы железа с углеродом на основе железа. Варьируя состав и структуру, получают железоуглеродистые сплавы с разнообразными свойствами, что делает их универсальными материалами.

Различают: чистые железоуглеродистые сплавы (со следами примесей), получаемые в небольших количествах для исследовательских целей и технические железоуглеродистые сплавы — стали (до 2%С) и чугуны (св. 2% С), мировое производство которых измеряется сотнями млн. т.

Технические железоуглеродистые сплавы содержат примеси. Их делят на обычные (фосфор Р, сера S, марганец Mn, кремний Si, водород Н, азот N, кислород О), легирующие (хром Cr, никель Ni, молибден Mo, вольфрам W, ванадий V, титан Ti, кобальт Со, медь Cu и др.) и модифицирующие (магний Mg, церий Ce, кальций Ca и др.).

В большинстве случаев основой, определяющей строение и свойства сталей и чугунов, является система Fe — С. Начало научному изучению этой системы положили русские металлурги П. П. Аносов (1831) и Д. К. Чернов (1868).

Аносов впервые применил микроскоп при исследовании железоуглеродистые сплавы, а Чернов установил их кристаллическую природу, обнаружил дендритную кристаллизацию и открыл в них превращения в твёрдом состоянии.

Из зарубежных учёных, способствовавших созданию диаграммы состояния Fe — С сплавов, следует отметить Ф. Осмонда (Франция), У. Ч. Робертса-Остена (Англия), Б. Розебома (Голландия) и П. Геренса (Германия).


1.1.1 Фазовые состояния.

Железоуглеродистые сплавы при разных составах и температурах описываются диаграммами стабильного (рис. 1, а) и метастабильного (рис. 1, б) равновесий. В стабильном состоянии в железоуглеродистые сплавы встречаются жидкий раствор углерода в железе (Ж), три твёрдых раствора углерода в полиморфных модификациях железа (табл. 1)

Рис. 1a. Диаграммы состояния железоуглеродистых сплавов: состояние стабильных равновесий.

Рис. 1в. Диаграммы состояния железоуглеродистых сплавов: состояния с двойными линиями.


Рис. 1б. Диаграммы состояния железоуглеродистых сплавов: состояние метастабильных равновесий.

Таблица 1.— Кристаллические фазы железоуглеродистых сплавов.

Название

фазы

Природа фазы Структура
a-феррит Твердый раствор внедрения углерода в a-Fe Объемноцентрированная кубическая
Аустенит Твердый раствор внедрения углерода в g-Fe Гранецентрированная кубическая
d-феррит Твердый раствор внедрения углерода в d-Fe Объемноцентрированная кубическая
Графит Полиморфная модификация углерода Гексогональная слоистая
Цементит Карбид железа Fe2C Ромбическая

a-раствор (a-феррит), g-раствор (аустенит) и d-раствор (d-феррит), и графит (Г).

В метастабильном состоянии в железоуглеродистые сплавы встречаются a-, g-, d-растворы и карбид железа Fe3C — цементит (Ц). Области устойчивости железоуглеродистых сплавов в однофазных и двухфазных состояниях указаны на диаграммах. При некоторых условиях в железоуглеродистых сплавах могут существовать в равновесии и три фазы. При температурах НВ возможно перитектическое равновесие d + g + Ж, E’C’F’ — эвтектическое стабильное равновесие g + Ж + Г; при ECF — эвтектическое метастабильное равновесие g + Ж + Ц; при P'S'K' — эвтектоидное стабильное равновесие a + g + Г', при PSK — эвтектоидное метастабильное равновесие a + g + Ц.

Диаграммы а и б вычерчиваю и в одной координатной системе (рис. 1, в). Такая сдвоенная диаграмма наглядно характеризует относительное смещение однотипных линий равновесия и облегчает анализ железоуглеродистых сплавов, содержащих стабильные и метастабильные фазы одновременно.

Основной причиной появления в железоуглеродистых сплавах высокоуглеродистой метастабильной фазы в виде цементита являются трудности формирования графита.

Образование графита в жидком растворе Ж и твёрдых растворах a и g связано с практически полным удалением атомов железа из участков сплава, где зарождается и растет графит. Оно требует значительных атомных передвижений. Если железоуглеродистые сплавы охлаждаются медленно или длительно выдерживаются при повышенных температурах, атомы железа успевают удалиться из мест, где формируется графит, и тогда возникают стабильные состояния.

При ускоренном охлаждении и недостаточных выдержках удаление малоподвижных атомов железа задерживается, почти все они остаются на месте, и тогда в жидких и твёрдых растворах зарождается и растет цементит. Необходимая для этого диффузия легкоподвижных при повышенных температурах атомов углерода, не требующая больших выдержек, успевает происходить и при ускоренном охлаждении.

Помимо основных фаз, указанных на диаграммах, в технических железоуглеродистые сплавы встречаются небольшие количества и др. фаз, появление которых обусловлено наличием примесей. Часто встречаются сульфиды (FeS, MnS), фосфиды (Fe3P), окислы железа и примесей (FeO, MnO, Al2O3, Cr2O3, TiO2 и др.), нитриды (FeN, AlN) и др. неметаллические фазы. Точечными линиями на диаграммах отмечены точки Кюри, наблюдающиеся в железоуглеродистых сплавах в связи с магнитными превращениями феррита (768°С) и цементита (210°С).

1.1.2 Строение железоуглеродистых сплавов

Строение железоуглеродистых сплавов определяется составом, условиями затвердевания и структурными изменениями в твёрдом состоянии.

В зависимости от содержания углерода железоуглеродистые сплавы делят на стали и чугуны. Стали с концентрацией углерода, меньшей чем эвтектоидная S' и S, называют доэвтектоидными, а более высокоуглеродистые — заэвтектоидными. Чугуны с концентрацией углерода, меньшей чем эвтектическая C1 и С, называют доэвтектическими, а более высокоуглеродистые — заэвтектическими.

Затвердевание сталей, содержащих до 0,5% С, начинается с выпадения кристаллов 8-раствора обычно в виде дендритов. При концентрациях углерода до 0,1% кристаллизация заканчивается образованием однофазной структуры d-раствора. Стали с 0,1—0,5% С после выделения некоторого количества 8-раствора испытывают перитектическое превращение Ж + d —> g. В интервале концентраций 0,10—0,16% С оно приводит к полному затвердеванию, а в интервале 0,16—0,50% С кристаллизация завершается при охлаждении до температуры линии IE. В железоуглеродистых сплавах с 0,5—4,26% С кристаллизация начинается с выделения g-раствора также в виде дендритов. Стали полностью затвердевают в интервале температур, ограниченном линиями ВС и IE, приобретая однофазную аустенитную структуру. Затвердевание же чугунов, начинаясь с выделения избыточного (первичного) gраствора, заканчивается эвтектическим распадом остатка жидкости по одному из трёх возможных вариантов: Ж ®g+ Г, Ж ® g+ Ц или Ж ® (+ Г + Ц.

В первом случае получаются т. н. серые чугуны, во втором — белые, в третьем — половинчатые. В зависимости от условий кристаллизации графит выделяется в виде разветвленных или шаровидных включений, а цементит — в виде монолитных пластин или проросших разветвленным аустенитом.

В железоуглеродистых сплавах, содержащих более 4,26—4,3% С, кристаллизация переохлажденного ниже линии D1C1 расплава в условиях медленного охлаждения начинается с образования первичного графита разветвленной или шаровидной формы. В условиях ускоренного охлаждения (при переохлаждениях ниже линии DC) образуются пластины первичного цементита. При промежуточных скоростях охлаждения выделяются и графит, и цементит. Кристаллизация заэвтектических чугунов, так же как и доэвтектических, завершается распадом остатка жидкости на смесь gраствора с высокоуглеродистыми фазами.

Строение затвердевших железоуглеродистых сплавов существенно изменяется при дальнейшем охлаждении. Эти изменения обусловлены полиморфными превращениями железа, уменьшением растворимости в нём углерода, графитизацией цементита. Структура может изменяться в твёрдом состоянии в результате процессов рекристаллизации твёрдых растворов, сфероидизации кристаллов (из неравноосных становятся равноосными), коалесценции (одни кристаллы цементита укрупняются за счёт других) высокоуглеродистых фаз.