Смекни!
smekni.com

Поведение металлов при повышении температуры (стр. 1 из 5)

Московский авиационный институт

(государственный технический университет)

каф. 903

Курсовая работа по предмету

материаловедение на тему:

“Поведение металлов при повышении температуры”.

Студент/гр. 02-209/: Задоров Вадим

Преподаватель: Клыпин А. А.

2003 Москва

ОГЛАВЛЕНИЕ

1. Влияние высокотемпературной термомеханической 3

обработки на тонкую кристаллическую структуру

аустенитных сталей и сплавов.

2. Закономерности роста зерен металлов и сплавов 8

при высоких температурах.

3. Влияние температуры на статистические 13

механические характеристики металлов.


Влияние высокотемпературной термомеханической обработки
на тонкую кристаллическую структуру аустенитных сталей и сплавов.

Исследование тонкой кристаллической структуры,
возникающей при проведении ВТМО, было выполнено в совместной ра-
боте автора, Е. Н. Соколкова, К. В. Варли и Ю. А. Сивкова на
образцах хромоникельмарганцовистой стали ЭИ481, а также сплава
ЭИ437Б. При этом определялись изменение периода кристаллической
решетки твердого раствора, размеры блоков, микродеформации, удельное электрическое сопротивление и текстура образцов, прошедших
ВТМО в условиях прокатки и последующее старение, а также контрольных образцов, подвергнутых закалке и старению по стандартному
режиму термической обработки данных материалов. Прокатку вели при
скорости 1,5 м/мин с обжатием на 25% и закалкой в воде.

Заготовки стали ЭИ481 выдерживали в течение одного часа при
1150 ºС и подвергали ВТМО при 1100 ºС и старению в течение 4 час при
750 ºС; заготовки сплава ЭИ437Б выдерживали 8 час. при 1080 °С и под-
вергали ВТМО по тому же режиму обжатия и при той же скорости про-
катки при 1080ºС Обработанные заготовки сплава проходили старение
в течение 6 час.
при 700 ºС.

Период кристаллической решетки измеряли по рентгенограммам,
снятым с эталоном в размере «КРОС-1». Съемку рентгенограмм с образ-
цов аустенитной стали ЭИ481 осуществляли на излучении Кα –Fe
, а для съёмки с образцов сплава ЭИ437Б использовалось
излучение Кα-Cu. Ошибка при определении периода
решетки твердого раствора не превышала 0,001 кХ.

Оценка размера блоков производилась по эффекту первичной
экстинкции и эффекту размытия линий на рентгенограммах.
Первый метод был примечен для определения размеров блоков, превышающих 0,2 мк, а второй — для более дисперсных блоков. Следует
отметить, что особенности» деформационной картины исследованных
аустенитной стали и сплава не позволили в равной степени использовать указанные выше методы для обоих материалов. Это объясняется
тем, что в процессе старения в сплаве ЭИ437Б выделяется упрочняю-
щая фаза, обладающая структурой, близкой к структуре матрицы.
Поэтому линии на рентгенограммах этой фазы и матрицы располагаются очень близко одна от другой, что затрудняет анализ. В связи
с этим при исследовании данного сплава для оценки размера блоков
был применен метод экстинкции, а для определения размера блоков и
микродеформацпй в стали ЭИ481 использован метод гармонического
анализа профиля линии рентгенограммы, а также метод анализа
уширения этой линии.

Для выявления текстуры возникающей при ВТМО, производили рентгеновскую съемку на отражение и на просвет на плоскую пленку.
Первая осуществлялась на излучении Кα –Мо; образец устанавливали
на расстоянии 70 мм от пленки под углом 10 — 12 ºCк пучку рентгено-
вых лучей. Съемку «на просвет» производили на образцах, приготов-
ленных в виде фольги толщиной около 0,1 мм, с использованием излучения Кα –Мо и Кα –Cu. В остальных случаях рентгеновского анализа
применяли образцы сечением 10×10 мм2 и длиной 10 ÷12 мм.

Для определения величины удельного электрического сопротивления ρ использовали схему двойного моста. Образцы имели форму стержней диаметром 5 мм и длиной 60 мм. Погрешность в определении
значения ρ не превышала 0,5%.

В табл. 1 приведены результаты измерения периода кристаллической решетки твердого раствора, величины микродеформаций, удельного электрического сопротивления и твердости по Виккерсу стали
ЭИ481 после двух видов обработки: обычной закалки и ВТМО. Образцы изучали до и после старения.

табл. 1

Влияние высокотемпературной термомеханической

обработки на тонкую кристаллическую структуру, электросопротивление

и твёрдость стали ЭИ481

Вид обработки

Период решетки Аº

Размер блоков

D мк

Величина микродефор-

маций z∙104

Удельное

электросопро-

тивление мком∙см

Твердость HVкг/мм2

Обычная закалка без

старения (эталон)

3,595 0,2 0 62,7 220
То же, со старением 3,592 0,2
61,2 290
ВТМО без старения 3,598
63,4 256
То же, со старением 3,590
59,4 380

Из данных табл. 1 можно видеть, что высокотемпературная пластическая деформация при ВТМО без старения приводит к заметному
увеличению периода решетки твердого раствора (с 3,595 до 3.598 кХ).
Старение, в процессе которого выделяется упрочняющая фаза, способствует уменьшению периода решетки главным образом вследствие
удаления из кристаллической решетки атомов углерода при образовании карбидной фазы. Так, после обычной закалки и старения в течение
четырех часов при 750 ºС период решетки уменьшается с 3,595 по 3,592 Аº. В результате старения по тому же режиму образцов, подверг-
нутых ВТМО, период решетки снижается в большей степени и его значениев этом случае составляет 3,590 Аº.

Таким образом, ВТМО без последующего старения вызывает увеличение периода решетки по сравнению с получаемым после обычной
закалки, а старение подвергнутых ВТМО образцов приводит к большему уменьшению периода, чем при аналогичном режиме старения
обычно закаленных образцов.

Увеличение периода решетки твердого раствора в результате
ВТМО свидетельствует о том, что пластическая деформация вызывает
в данном материале более полное растворение избыточных фаз. Более
интенсивное уменьшение периода решетки твердого раствора после
старения прошедших ВТМО образцов по сравнению с эффектом старения после обычной закалки является следствием более глубокого
распада твердого раствора с образованием большего количества упрочняющей фазы. Эти экспериментально установленные факты очень важны для характеристики особенностей состояния материала, возникших в результате высокотемпературной пластической деформации при условии исключения рекристаллизации.
Выводы об изменениях концентрации твердого раствора в результате ВТМО, сделанные на основании рентгеноструктурных исследований, находятся в соответствии с данными измерения удельного электрического сопротивления ρ. Действительно, величина ρ для образцов, подвергнутых ВТМО без последующего старения, больше, чем для образцов обычно закаленных. Эти величины для указанных обработок составляют 63,4 и 62.7 мком∙см соответственно. Рост значения — ρ является следствием увеличения концентрации твердого раствора, и этот результат подтверждает аналогичный вывод, полученный на основе обнаруженного изменения периода решетки. Процесс старения, вызывая распад твердого раствора, уменьшает электрическое сопротивление, и значение ρ для образцов, прошедших обычную закалку, равно 61,2 мком∙см. У образцов, подвергнутых ВТМО, величина электросопротивления в результате старения претерпевает более сильное падение и составляет 59,4 мком∙см Это является следствием большей степени
распада твердого раствора (при тех же режимах старения), наблюдаю-
щегося в образцах, подвергнутых ВТМО.

Таким образом, на основании рентгеноструктурных исследований и измерений электрического сопротивления можно считать установленным, что ВТМО по сравнению с обычной закалкой с той же температуры обеспечивает более полное растворение легирующих элементов в твердом растворе Старение при одних и тех же режимах приводит к выделению после ВТМО упрочняющей фазы в значительно большем количестве.

Из сказанного выше следует, что наряду с подавлением процессов
рекристаллизации при ВТМО пластическая деформация при указанной
обработке способствует большему обогащению твердого раствора легирующими элементами, а также более интенсивному выделению упрочняющей фазы при последующем старении.

Дальнейшее исследование структурных особенностей материала,
возникающих в результате ВТМО, было связано с оценками характеристик блочной структуры и величины микродеформаций.

На основании анализа уширения линий на рентгенограммах и ин-
тенсивностей этих линий установлено, что ВТМО приводит к существенному уменьшению размеров областей когерентного рассеяния (блоков мозаики). Так, если после обычной закалки стали ЭИ481 размер блоков значительно больше 0,2 мк, то после ВТМО их величина уменьшается до 0,05 мк. Установлено также, что старение не влияет на размер блоков ни в образцах после обычной закалки, ни в образцах, прошедших ВТМО (см. табл. 1). Уменьшение размера блоков в образцах, подвергнутых ВТМО, — прямое следствие высокотемпературной пластической деформации, протекающей при указанной выше скорости прокатки. Можно считать, что при данной температуре деформирования (1100 º), за которым следует немедленное охлаждение, в
материале не только не успевают развиваться рекристаллизационные
процессы (путем зарождения и роста новых зерен), но и в значительной степени оказывается заторможенным рост блоков, возникших при
пластической деформации, Это положение можно подтвердить тем, что
повышение температуры деформирования до 1200 ºС уже не приводит ктакому существенному измельчению блоков. Экспериментально, установлено, что после ВТМО при 1200 ºС, проведенной с той жескоростью
прокатки и величиной обжатия, размер блоков такой же, как и после
обычной закалки (больше 0,2 мк). В принятых условиях охлаждения
рост блоков после деформирования с 1200 ºС получает достаточно интенсивное развитие. В таком же направлении действует, очевидно, и
увеличение скорости деформирования, так как повышение скорости
приводит к более интенсивному разогреву металла в микрообластях сосредоточения пластической деформации. Возникающее дополнительное
тепло в этом случае должно способствовать росту блоков. Вероятно,
именно этим обстоятельством следует объяснить то факт, что при увлечении скорости прокатки при ВТМО с 1,5 до 5,7 м/мин размер блоков
в рассматриваемом материале возрастает с 0.05 до 0,12 — 0,2 мк.
Анализ результатов определения микродеформаций кристаллической решетки стали ЭИ481 показывает, что обнаруженный эффект
в значительной степени можно отнести за счет концентрационной неоднородности твердого раствора. Это имеет место, например, в образцах,
закалке с высокой температуры. Очевидно, что при
повышении температуры нагрева от 1150 до 1200 ºС влияние неоднородности твердого раствора на образование микронапряжений из-за дополнительного растворения избыточной фазы больше, чем развитие
гомогенизации в этих условиях.