Смекни!
smekni.com

Разработка электромеханического привода подачи станка модели 16К20 (стр. 5 из 6)

Fr=4667∙tg20°=1698 мм.

Рассмотрим данную расчетную схему вала в двух плоскостях: горизонтальной и вертикальной, в которых действуют радиальная и окружная силы.

Рисунок 3. 2 – Схема нагружения и эпюры крутящих и изгибающих моментов рассчитанного вала.

Составим уравнение равновесия вала в горизонтальной плоскости.

По найденным реакциям строим эпюру изгибающих моментов в вертикальной плоскости. Составим уравнение равновесия в вертикальной плоскости.

Суммарный изгибающий момент в опасном сечении вала:

Эквивалентный момент в опасном сечении вала:

3.6 Расчет вала на усталость

Усталостный расчет вала выполняется как проверочный. Он заключается в определении расчетных коэффициентов запаса прочности в предположительно опасных сечениях.

При расчете принимаем, что напряжения изгиба изменяются по симметричному циклу, а напряжения кручения – по отнулевому циклу.

Амплитудные значения напряжений изгиба и кручения определяются по формулам:

где М – изгибающий момент в сечении;

Wнетто – момент сопротивления сечения изгибу,

Wкнетто – момент сопротивления сечения кручению;

Момент сопротивления сечения изгибу для сечения со шпоночным пазом определяется по формуле:

где e - коэффициент нагружения шлицев.

Момент сопротивления сечения кручению определяется по формуле:

Коэффициенты запаса усталостной прочности определяются по формуле:

по нормальным напряжениям

по касательным напряжениям

гдеs-1, t-1 – пределы выносливости для стали 40Х:

s-1 = 470 МПа, t-1 = 270 МПа;

es, et - коэффициенты, учитывающие влияние абсолютных размеров вала, определяются по таблице 15 [5, с. 11] , es = et = 0,75;

(кs) d, (кt) d – коэффициенты концентрации напряжений при изгибе и

кручении с учетом влияния шероховатости поверхности;

b - коэффициент упрочнения поверхности, b = 2,5 – при улучшении;

sа, tа – напряжения изгиба и кручения;

ys, yt - коэффициенты, характеризующие чувствительность материала к асимметрии цикла напряжений, определяется по таблице 9 [5, с. 11] ,

ys = 0,1, yt = 0,05;

sm = 0;

tm = tа.

Коэффициенты концентрации напряжений при изгибе и кручении с учетом влияния шероховатости поверхности определяются по формулам:

(кs) d = кs +

-1

(кt) d = кt +

- 1

где кs, кt - эффективные коэффициенты концентрации напряжений, определяются по таблице 18 [5, с. 31] , кs= 1,72 кt = 2,7;

,
- коэффициенты влияния шероховатости поверхности,

определяются по таблице 20 [5, с. 32] ,

=1
=1.

Определяем (кs) d:

(кs) d =1,72+1–1=1,72

Определяем (кt) d:

(кt) d =2,7+1–1= 2,7

определяем Ss:

Определяем St:

Общий запас прочности определяется по формуле:

S=

S≥ [S] =1. 5…2. 5, т.е. условие выполняется.

3.7 Выбор элементов передающих крутящий момент

Для всех передач принимаем шлицевое соединение, которое имеет следующие размеры рабочих частей:

, b=6, dlmin=23,4, a=1,65, =0,6, rmax=0,3.

, b=8, dlmin=29,4, =0,6, rmax=0,3.

, b=8, dlmin=39,5, a=2,57, =0,6, rmax=0,3.

Шлицевое соединение подлежит проверке на смятие, которая проводится по формуле:

Где T –крутящий момент на валу;

j - коэффициент, который учитывающий неравномерное распределение нагрузки между шлицами (обычно принимают =0,75); z - количество шлицев; D – наружный диаметр шлицев; d – внутренний диаметр шлицев;  - размер фаски по длине шлица; lp – рабочая длина шлицев, чаще всего равна длине хвостовика.

[sсм] – допускаемые напряжения смятия для материала шлицев средней серии:

[sсм] = 30-60 МПа.

Все выбранные шлицевые соединения соответствуют условию прочности при проверке на смятие.

3.8 Выбор подшипников

Для выбора подшипников опор валов определяем диаметры шипов, которые определяются по формуле:

dш=(0,8…0,9) dв, dш=0,85 45=40мм

Учитывая элементы расположенные на валах а также по полученным диаметрам шипов, выбираем подшипники, параметры которых сносим в таблицу 8.

Таблица 8 – Параметры подшипников.

Подшипник внутренний диаметр d, мм наружный диаметр D, мм ширина кольца B, мм статическая грузоподъем-ностьC0,кН
3608 40 90 33 64,9
3608 40 90 33 64,9

3.9 Проверочный расчет подшипников

Фактическая долговечность подшипника

в часах.

;

где С – динамическая грузоподьемность, кН.

Р – приведенная грузоподьемность, кН.

r - коэфициент формы тел качения,

- для шариковых подшипников,
- для роликовых подшипников.

Приведенную грузоподьемность:

Н;

де V – „коэффициент кольца”: V=1 при вращении внутреннего кольца, V=1,2 при при вращении наружного кольца;

R, A – радиальная и осевая нагрузка на подшипник;

X, Y – коэффициенты приведения R, A; Х=1. [3 с. 68 табл. 8. 4]

- коэффициент безопасности, зависит от вида работы и серьезность последствий аварии. [3 с. 65 табл. 8. 1].

- коэффициент температурного режима. [3 с. 65 табл. 8. 2].

- временная нагрузка до
.

- при
.

, т. к.
часов то условие долговечности выполняется.

4. Определение системы смазки

Смазочная система станка служит для подачи смазочного материала ко всем трущимся поверхностям.

Существует несколько схем подвода смазочного материала к трущимся поверхностям.

Индивидуальная схема служит для подвода смазочного материала к одной смазочной точке, централизованная к нескольким точкам. В нераздельной схеме нагнетательное устройство присоединено к смазочной точке постоянно, в раздельной оно подключается только на время подачи смазочного материала. В проточной системе жидкий или пластичный материал используется один раз. В циркуляционной системе жидкий материал подается повторно. В системах дроссельного дозирования объем смазочного материала, подаваемого к смазочной точке регулируется дросселем. В системах объемного дозирования могут регулироваться не только доза, но и частота подачи. В комбинированных системах могут быть предусмотрены объемное и дроссельное регулирование одно - и двухматериальные питатели. Системы с жидким смазочным материалом в зависимости от способа его подачи к поверхностям трения могут быть разбрызгивающими, струйными, капельными, аэрозольными.