Смекни!
smekni.com

Шлюзовый дозатор для муки (стр. 1 из 3)

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное образовательное учреждение

ВПО «Башкирский государственный аграрный университет»

Факультет Пищевые технологии

Кафедра МППЖ

Специальность технология и хранения зерна

Форма обучения очная Курс, группа 4-401

Курсовой проект

Шлюзовый дозатор для муки

Хуснутдинов Артур Минисламович

Руководитель: Нагимов А.Х.

УФА 2007


РЕФЕРАТ

Проект 1 рисунок, 1 таблица, 6 источников, лист формата А1 графического материала

ДОЗИРУЮЩЕЕ УСТРОЙСТВО, ДОЗАТОР МУКИ, ДОЗИРОВАНИЕ, МУКА, ПРИВЕДЕННЫЕ ЗАТРАТЫ, ОПТИМИЗАЦИЯ. Объектом курсового проекта являются дозатор муки периодического действия Цель проекта – снижение эксплуатационных затрат у потребителя.

Описано устройство и принцип действия дозатора муки. Разработан метод расчета дозатора муки.


ВВЕДЕНИЕ

Основное назначение дозирующих устройств — обеспечить заданное количество материала по массе (или поддержание заданного расхода компонента) с определенной точностью. Дозирование компонентов является одной из важнейших операций технологического процесса приготовления теста.

К дозаторам предъявляются следующие основные требования:

определенная точность дозирования компонентов;

высокая производительность;

простота конструкции и высокая надежность работы узлов дозатора и его системы управления;

возможность создания автоматических комплексов, позволяющих осуществлять замес тестовых полуфабрикатов по заданной технологической программе.

По структуре рабочего цикла дозирование бывает непрерывным или порционным, а по принципу действия — объемным или весовым.

Для порционного дозирования характерно периодическое повторение циклов выпуска дозы (порции) компонента. При порционном объемном способе дозирующее оборудование обычно отмеривает порцию при помощи мерной камеры заданного объема. Порционное весовое дозирование основано на отмеривании дозы определенной массы. При непрерывном объемном дозировании дозатор подает поток материала с заданным объемным расходом.

Весовой способ дозирования, как правило, обеспечивает большую точность, поэтому для дозирования основного компонента теста — муки, как при непрерывном, так и порционном тестоприготовлении все в большой мере используют весовые дозаторы.

Объемный способ дозирования конструктивно более прост, поэтому дозаторы, основанные на этом принципе работы, более надежны. Применение объемного метода существенно упрощает процесс дозирования жидких компонентов. Вместе с этим, объемное дозирование нередко характеризуется более значительной погрешностью в величине выдаваемых доз, что в отдельных случаях может ограничить его применение.

В хлебопекарной промышленности применяется систематическое дозирование нескольких различных видов сырья, поэтому рационально применение многокомпонентных дозирующих устройств.

Такие установки могут работать в автоматическом режиме, а функции обслуживающего персонала сводятся к наблюдению и контролю точности работы установки. Подобные многокомпонентные системы применяются как для порционного, так и для непрерывного дозирования объемным или весовым методом.

Многокомпонентное дозирование может осуществляться по следующим схемам.

1.Последовательное дозирование компонентов в одном общем дозаторе.

2.Параллельное дозирование каждого компонента в отдельном

3. специальном дозаторе (так называемые, дозировочные станции).

Первая схема используется, как правило, при порционном тестоприготовлении и является весьма простой и экономичной. Она обеспечивает меньшую металлоемкость и компактность установки. Однако длительность общего цикла дозирования из-за последовательного отмеривания компонентов велика. Это может снижать производительность тестоприготовительного оборудования.

Вторая схема применяется при непрерывном и порционном замесе тестовых полуфабрикатов. Она позволяет наиболее полно приспособить каждый дозатор к особенностям дозируемого компонента и, тем самым, повысить точность дозирования. Вместе с этим, нужно учитывать, что дозировочные станции такого типа более громоздки и имеют большую стоимость.

Упрощенная классификация дозаторов по структуре рабочего цикла и конструктивным признакам выглядит так:

Для приготовления полнорационных кормовых смесей необходимо точное дозирование каждого-вида кормов. Дозирование кормов производят по объему или массе. Дозаторы могут быть порционного и непрерывного действия. В настоящее время широкое распространение получили барабанные, объемные дозаторы. Они могут работать непрерывно и порционно


Анализ конструкции дозатора

Дозатор имеет воронку 1, ворошитель 2, барабан катушечного типа 3, регулировочный цилиндрический кожух 4, маховик регулировочного винта 5 и контргайку 6. Из бункера вместимостью 0,09 м3 концентраты поступают в воронку дозатора. Здесь они перемешиваются пальцами ворошителя и заполняют рабочий объем, катушки барабана. Барабан дозатора, вращаясь с частотой п=25,5 или 46 мин~1, непрерывно подает корм в смеситель. Максимальная рабочая длина барабана, когда цилиндрический кожух находится в крайнем положении, L = 220 мм. Изменяя расположение кожуха, изменяют рабочую длину барабана,' следовательно и производительность. Теоретическую производительность дозатора рассчитывают по формуле

где QТ— теоретическая производительность дозатора, т/ч; А — площадь сечения одной секции барабана, м2; L. — рабочая длина барабана, м; p — плотность материала, кг/м3; z —число секций барабана; п — частота вращения барабана, мин-1. Действительная производительность будет


где

— коэффициент использования производительности.

Из этих формул видно, что производительность дозатора при остальных постоянных величинах зависит только от рабочей длины барабана. Для быстрой установки дозатора на данную производительность удобно использовать график зависимости производительности от рабочей длины барабана. Для этого поступают следующим образом: зная постоянные значения F, p, zи п, задаются рабочей длиной барабана (не менее трех размеров) и рассчитывают теоретическую производительность дозатора. По полученным данным строят график зависимости теоретической производительности от рабочей длины барабана. Действительную производительность определяют экспериментально. Во время работы дозатора при разных рабочих длинах барабана (не менее трех) за определенный промежуток времени собирают высев концентрата. Эксперименты для каждой рабочей длимы барабана повторяют три раза. Полученные результаты вносят в таблицу. Действительную производительность дозатора определяют по формуле

где М — масса высева концентрата во время эксперимента,

кг; t — продолжительность эксперимента, с

По данным таблицы строят график зависимости действительной производительности от величины рабочей длины барабана. Коэффициент использования производительности рассчитывают по формуле (48).

Величины QT берут из графика при одной и той же рабочей длине барабана. По данной методике можно строить графики производительности для различных видов кормов.

Мощность в кВт на валу барабана дозатора рассчитывают по формуле

где К1— коэффициент, учитывающий сопротивление продукта дроблению. Для порошкообразных и, мелкозернистых материалов (К1= 1,0, для кусковых, легко распадающихся материалов К1 = 2,0; v — окружная скорость барабана, м/с;

где D — диаметр барабана, м; N-частота вращения барабана, мин;

Р — сила трения, возникающая при скольжении материала о материал, Н.

В свою очередь эту силу рассчитывают по формуле '

где р0 — угол естественного откоса материала при движении. Для кукурузы и овса ро'=28°, для ржи и пшеницы р0' = 25а; р-давление материала на поверхность барабана, Ра.

А1— площадь горизонтального сечения горловины бункера над барабаном, м2.

Необходимую мощность в кВт электродвигателя для дозатора рассчитывают по формуле


где K— коэффициент, учитывающий потери на трение рабочих органов дозатора, (K=1,1 — 1,2; η— к. п, д. привода, η = 0,8.

Дозирование компонентов — процесс, от которого зависит качество полнорационных кормосмесей и комбикормов.

Большое распространение на комбикормовых заводах получил питающий дозатор барабанного типа ДП-1, предназначенный для дозирования сыпучих продуктов. Он представляет собой стальной корпус, внутри которого на валу укреплен барабан диаметром 0,33 м, состоящий из отдельных звездочек, между которыми установлены диски, разделяющие его на четыре секции. Секции смещены относительно друг друга на 10 ° по винтовой линии, что дает возможность непрерывно и равномерно подавать компоненты. Дозатор ДП-1 обеспечивает массовый расход до 3,825 кг/с при размерах приемного отверстия 0,74Х Х0.35 м и частоте вращения вала барабана — 0,517 с~:. Потребляемая мощность дозатора 0,25 кВт* Технологический процесс работы барабанных дозаторов протекает следующим образом. Продукт, поступающий в приемный патрубок, захватывается вращающимся барабаном и при опрокидывании ковшей сбрасывается в выходное отверстие.