Смекни!
smekni.com

Тепловая обработка сырья (стр. 1 из 7)

Содержание

Введение

1. Характеристика материалов (с расчетом состава бетона) и габаритные размеры изделий

1.1 Материалы для бетона

1.2 Подбор состава бетона

1.3 Габаритные размеры изделий

2. Описание технологического процесса изготовления изделий

3. Выбор и обоснование режима ТВО

4. Определение габаритных размеров и требуемого количества тепловых агрегатов

5. Описание конструкции установки и порядок ее работы

6. Теплотехнический расчет

6.1 Расчет теплоты для нагрева изделий определяем по формуле

6.2 Расчет теплоты для нагрева форм

6.3 Расчет потерь теплоты через ограждающие конструкции установки

6.4 Теплота экзотермических реакций гидратации цемента

7. Определение удельных часовых расходов теплоты и теплоносителя

8. Расчет системы теплоснабжения

9. Методы контроля расхода пара дифманометром

10. Охрана труда и техника безопасности

Литература

Введение

Тепловую обработку строительных материалов и изделий целесообразно рассматривать в двух аспектах. С одной стороны следует проанализировать пути превращения сырьевых материалов и готовую продукцию или полуфабрикат в процессе тепловой обработки. Эта задача сугубо технологическая. С другой стороны необходимо рассмотреть работу тепловых установок (пропарочных, сушильных, обжиговых), которая определяется законами теплотехники.

При тепловой обработке в материалах и изделиях происходят физико-химические превращения, формируется структура, идут процессы тепло и массопереноса, возникает напряженное состояние. Взаимозависимость и сложность этих явлений предопределили на начальных этапах эмпирический характер развития данной отрасли науки. Постепенно накапливались экспериментальные данные об этих явлениях, причем из-за их сложности в основном изучалась динамика качественных изменений отдельных процессов.

Результаты исследований с использованием законов физики, химии и прикладных наук позволили создать предпосылки для математического описания процессов с целью создания теоретических основ, без которых невозможно определить пути оптимизации тепловой обработки. Создание прогрессивных технологий с минимальными затратами материальных и энергетических средств — одна из главных задач всех отраслей народного хозяйства, в том числе и строительной индустрии, к которой относится и производство строительных материалов и изделий. Одной из основных составных частей технологии строительной индустрии является тепловая обработка, на которую затрачивается около 30 % стоимости производства строительных материалов и изделии. Кроме того, тепловая обработка потребляет около 80 % от расходуемых на весь производственный цикл топливно-энергетических ресурсов. Таким образом, создание экономичных тепловых процессов, позволяющих получать изделия отличного качества с минимальными затратами топлива и электроэнергии, даст возможность существенно уменьшить капиталовложения в сферу строительства. Для создания таких тепловых процессов необходимы глубокие знания в области тепловой обработки строительных материалов и изделии, устройства тепловых установок, их конструирования и эксплуатации.

Рассматривая в целом процессы, проходящие в материалах и изделиях при тепловой обработке, необходимо помнить, что они являются следствием процессов, проходящих в тепловых установках. Изучение этой достаточно сложной взаимосвязи, порой еще мало исследованной, является главной задачей, которую приходится решать нашим ученым.

Первые попытки проанализировать работу тепловых установок были сделаны еще М. В. Ломоносовым и успешно продолжены В.Е. Грум-Гржимайло, который создал научную теорию, объясняющую работу печей и сушил. Д.И. Менделеев предложил формулу для определения теплотворной способности топлива.

Наука о процессах, проходящих в материалах при тепловой обработке, начала развиваться значительно позднее. Например, положения о кинетике процесса сушки были выдвинуты в 20-х годах П.С. Косовичем и А.В. Лебедевым применительно к испарению влаги из почвы. Представления о формах свели влагу с материалом, определяющие сушку, были впервые сформулированы акад. П.А. Ре-Линдером. Проф. Л.К. Рамзнн также впервые и 1918 г. предложил 1 – d – диаграмму влажного воздуха и создал методику расчета сушильных установок.

Большое значение для развития науки о сушильных процессах имели работы А.П. Ворошилова, М.И. Лурье, М.Ф. Казанского, П.Г. Ромапкова и А.В. Лыкова. Процессы, проходящие в материалах при обжиге, описаны в трудах Д.С. Беляпкина, П.П. Будникова, К.А. Нохратяна, О.П. Мчедлова-Петросяна н ряда других ученых. Эта область науки является пока еще наименее изученной.

Большое значение для производства сборного бетона и железобетона имеют исследования, связанные с тспловлажностной его обработкой, получившие широкое развитие в 50-е годы. Ряд основных положений об этих процессах сформулированы были несколько ранее А.В. Волженским и П.И. Боженовым, первым применительно к тепловой обработке силикатного, а вторым — автоклавного бетонов. С дальнейшим развитием представлений о процессах, проходящих при тепловлажностной обработке связаны труды С.А. Миронова, Л.А. Малининой, А.Д. Дмитровнча, И.Б. Заседателева, Н.Б. Марьямова и других ученых.

Накопленные знания о взаимосвязи тепловых процессов, проходящих в установках, с развивающимися в материалах, обширный экспериментальный материал, обобщенный на основе законов физики, химии и математики, создают основу для перехода к созданию моделей этих взаимосвязанных процессов и, следовательно, к решению конкретных задач по оптимизации тепловой обработки.

При производстве строительных изделий, деталей и материалов почти во всех случаях для перевода сырья в новое качество — готовую продукцию — применяют тепловую обработку. В большинстве случаев тепловая обработка дает возможность придать сырью новые, качественно отличные свойства, необходимые в строительстве. Такой процесс происходит за счет физических и физико-химических превращений в обрабатываемом материале, течение которых зависит от воздействия тепла.

Для теплового воздействия материал помещают в установку, которую в общем случае называют тепловой установкой. Различные физические и физико-химические превращения в материале требуют различного теплового воздействия. Поэтому в каждой тепловой установке создают свой необходимый для обработки продукции тепловой режим. Под тепловым режимом понимают совокупность условий теплового и массообменного воздействия на материал, как-то: изменение температуры среды, скорость течения газов или жидкости, омывающих материал, концентрацию газов, их давление. Следовательно, тепловые режимы представляют собой совокупность тепловых, массообменных и гидродинамических процессов, происходящих в тепловой установке.

Тепловой режим установки будет воздействовать на сырье и за счет физических и физико-химических превращений в нем оно превратится в готовую продукцию. Очевидно, изучая данную дисциплину, необходимо выяснить, как различные тепловые режимы воздействуют на разные материалы, какие процессы происходят в материалах при тепловой обработке, а также научиться определять наиболее эффективные режимы.

1. Характеристика материалов (с расчетом состава бетона) и габаритные размеры изделий

1.1 Материалы для бетона

Керамзит - это экологически чистый утеплитель. В переводе с греческого языка на русский "керамзит" переводится как "обожженная глина". Он представляет собой легкий пористый материал, получаемый при ускоренном обжиге легкоплавких глин.

По внешнему виду керамзит напоминает гравий, то есть представляет собой гранулы преимущественно округлой или овальной формы различного размера, поэтому часто его называют керамзитовый гравий. В технологическом процессе изготовления керамзита наблюдаются два явления: при резком тепловом ударе, подготовленной специальным образом глины, она вспучивается, чем достигается высокая пористость материала, а внешняя поверхность быстро оплавляется, что придает материалу достаточно высокую прочность и устойчивость к внешним воздействиям и создает почти герметичную оболочку. Поэтому качество керамзита во многом определяется точностью исполнения технологического процесса.

В зависимости от режима обработки глины можно получить керамзит различной насыпной плотности (объемным весом) - от 200 до 400 кг/куб. м. и выше. Чем ниже плотность вещества, тем он более пористый, а значит, обладает более высокими теплоизоляционными свойствами. Но тем сложнее при производстве получить необходимую прочность. Материал также характеризуется величиной керамзитовых гранул, которая колеблется от 2 до 40 мм, и в зависимости от их размера подразделяется на фракции, например 5-10 мм или 10-20 мм. Основываясь на размерах, продукцию делят на керамзитовые гравий, щебень и песок.

Гравий - это частицы округлой формы диаметром 5 - 40 мм, получаемые вспучиванием легкоплавких глин. Он морозоустойчив, огнестоек, не впитывает воду и не содержит вредных примесей. Керамзитовый щебень - это наполнитель произвольной формы (преимущественно угловатой) с размерами частиц 5 - 40 мм. Он получается путем дробления кусков вспученной массы керамзита.

Таким образом, керамзит - это уникальный керамический пористый гравий, который обладает следующими свойствами:

- легкость и высокая прочность;

- отличная тепло и звукоизоляция;

- огнеупорность, влаго- и морозоустойчивость;

- кислотоустойчивость, химическая инертность;

- долговечность;

- экологически чистый натуральный материал;

- высокое отношение качество/цена.

Анализ теплоизоляционных и механических свойств керамзита позволяет использовать этот материал на российском и зарубежном рынке для теплоизоляции крыш, полов и стен, фундаментов и подвалов. Установлено, что рациональное использование керамзита в качестве теплоизолирующего материала при строительстве обеспечивает сокращение теплопотерь более чем на 75 %.