Смекни!
smekni.com

Детали приборов (стр. 3 из 10)

Для сохранения точного взаимного расположения деталей при повторных сборках применяются установочные штифтовые соединения, обеспечивающие легкий съем одной из деталей со штифтов. Рекомендуемые посадки в звисимости от габаритов и характера нагрузки H7/m6, G7/m6 или F7/m6.

Условие равнопрочности

Штифты используются для точного позиционирования деталей. При ориентировании деталей относительно друг друга (соед-е крышки и корпуса) обычно использ-ся 2 штифта, но для фиксации углового положения детали дост-но одного фиксирующего штифта.

9.Механические передачи. Основные виды. Передачи зацеплением и фрикционные передачи

Механической передачей называют устройство для передачи механического движения от двигателя к исполнительным органам машины. Это передача мех. Энергии на расстояние с одновременным преобразованием скоростей, моментов, усилий, траекторий движения. Необходимость применения таких устройств обусловлена нецелесообразностью, а иногда и невозможностью непосредственного соединения рабочего органа машины с валом двигателя. Механизмы вращательного движения позволяют осуществить непрерывное и равномерное движение с наименьшими потерями энергии на преодоление трения и наименьшими инерционными нагрузками.

Механические передачи вращательного движения делятся:

- по способу передачи движения от ведущего звена к ведомому на передачи трением (фрикционные, ременные) и зацеплением (цепные, зубчатые, червячные);

- по соотношению скоростей ведущего и ведомого звеньев на замедляющие (редукторы) и ускоряющие (мультипликаторы);

- по взаимному расположению осей ведущего и ведомого валов на передачи с параллельными, пресекающимися и перекрещивающимися осями валов.

Из всех типов передач наиболее распространенными являются зубчатые – преобразование угловой скорости в линейную.В каждой передаче различают два основных вала: входной и выходной, или ведущий и ведомый. Между этими валами в многоступенчатых передачах располагаются промежуточные валы.

Основные характеристики передач:

- мощность Р1 на входе и Р2 на выходе, Вт; мощность может быть выражена через окружную силу Ft (Н) и окружную скорость V (м/с) колеса, шкива, барабана и т.п.:

Р = Ft×V;

- быстроходность, выражающаяся частотой вращения n1 на входе и n2 на выходе, мин–1, или угловыми скоростями ω1 и ω2 , с-1;

- передаточное отношение – отношение угловой скорости ведущего звена к угловой скорости ведомого звена:

при u > 1, n1 > n2 – передача понижающая, или редуктор,

при u < 1, n1 < n2 – передача повышающая, или мультипликатор

если u ≠ const – устройство вариатор;

- коэффициент полезного действия (КПД )-характеризует какой % энергии трансмиссия передает рабочему органу

- моменты на валах. Моменты Т1 (Н·м) на ведущем и Т2 на ведомом валах определяют по мощности (кВт) и частоте вращения (об./мин) или угловой скорости (с-1):

, Где ω=

Связь между вращающими моментами на ведущем Т1 и ведомом Т2 валах выражается через передаточное отношение u и КПД η: Т2 = Т1 η u.

Фрикционные передачи

Передачи, работа которых основана на использовании сил трения, возникающих между рабочими поверхностями двух прижатых друг к другу тел вращения, называют фрикционными передачами.

Для нормальной работы передачи необходимо, чтобы сила трения Fтр была больше окружной силы Ft, определяющей заданный вращающий момент: Ft < Fтр.

Сила трения Fтр = Fn f,

где Fn – сила прижатия катков; f – коэффициент трения.

Схема простейшей фрикционной нерегулируемой передачи состоит из двух катков с гладкой цилиндрической поверхностью, закрепленных на параллельных валах.

Передачи зацеплением - цепные, зубчатые, червячные.

Цепная передача — это передача механической энергии при помощи гибкого элемента (цепи) за счёт сил зацепления.

Зубча́тая переда́ча — это механизм или часть механизма, в состав которого входят зубчатые колёса.

Назначение:

- передача вращательного движения между валами, которые могут иметь параллельные, пересекающиеся и скрещивающиеся оси

- преобразование вращательного движения в поступательное и наоборот.

При этом усилие от одного элемента к другому передаётся с помощью зубьев.

Червя́чная переда́ча (зубчато-винтовая передача) — механическая передача, осуществляющаяся зацеплением червяка и сопряжённого с ним червячного колеса. Червяк представляет собой винт со специальной резьбой. Червячное колесо представляет собой зубчатое колесо. Входной и выходной валы передачи скрещиваются, обычно (но не всегда) под прямым углом.

10. Передача цилиндрическими колесами. Расчет зубчатых передач на изгиб зуба

Зубчатые колеса для параллельных валов называют цилиндрическими. Одно из двух входящих в зацепление зубчатых колес – передающее движение – является ведущим, другое – ведомым. Если одно из колес значительно меньше другого, оно называется шестерней. Если отношение частот вращения ведущего и ведомого колес равно единице, то оба зубчатых колеса имеют одинаковые размеры. Передаточное отношение равно отношению чисел зубьев двух колес.

Зубчатые колеса, зубья которых параллельны оси колеса, называются прямозубыми. Для увеличения контактной длины и числа зубьев, находящихся в зацеплении (что необходимо для передачи большего момента и более плавной работы на повышенных частотах вращения), применяют косозубые зубчатые колеса. Серьезным недостатком косозубых колес является осевое усилие, возникающее в контакте зацепленных зубьев. Для его устранения применяются шевронные зубчатые колеса с V-образными (угловыми) косыми зубьями.

Расчетом определяют напряжение в опасном сечении на переходной поверхности зуба для каждого зубчатого колеса.

Выносливость зубьев, необходимая для предотвращения усталостного излома зубьев, устанавливают сопоставлением расчетного местного напряжения от изгиба в опасном сечении и допускаемого напряжения

σF ≤ σFP

Расчетное местное напряжение при изгибе определяют по формуле

σF

,

Ft – окружная сила Ft =

Для коэффициента нагрузки

принимают:
, KA – коэф. учитывающ внешнюю динамич. нагрузку

Между допускаемым напряжением

пределом выносливости

KF – коэф. нагрузки,

YFS – коэф. учитывающ. Форму зуба и концентрацию напряж.,

Yβ – коэф. учитывающий наклон зуба, Yε – коэф. учит. перекрытие зуба.

11. Проектирование зубчатых передач. Выбор модуля

При проектировании з-й п-чи, особенно силовой, лимитир-м ф-м явл-ся износостойкость передачи, зависит от радиусов кривизны эвольвент. Следовательно, от диаметров колёс. Поэтому прежде всего необх. Опред-ть диаметры з-х к-с. Исходя из условия контактной прочности диаметр ведущего(меньшего) колеса прямозубой цил-й передачи можно опр-ть:

, (3.1)

где d1 – делительный диаметр меньшего колеса (шестерни), мм;

С – коэффициент, учитывающий геометрию передачи, и свойства материалов: 2,8 – для стальных незакаленных колес; 2,0 – для стальных закаленных;

Т1 – крутящий момент на валу меньшего колеса, Н∙мм;

U12 – передаточное отношение пары зубчатых колес.

Формула основана на средних знач-х параметров и при конструир-нии возм-на корректировка рез-в в пределах ±30%

Модуль m в миллиметрах определяется из следующей зависимости:

, (3.2)

где z1 – число зубьев шестерни (определяется по рекомендации справочной литературы [3,4] в зависимости от необходимой плавности работы, скорости вращения или заданного межосевого расстояния).

Модули эвольвентного зацепления цилиндрических колес регламентированы ГОСТ 9563-60. Стандартизован нормальный модуль mn . Стандарт предусматривает два ряда предпочтения. В первом ряду предусмотрены модули от 0,05 до 100 мм [2]. Второй ряд предусматривает промежуточные значения, в единичном производстве его применение нежелательно.

Изготовление колес c модулем менее 1,0 мм затруднительно.

Модуль выбирается таким, чтобы меньшее колесо передачи хорошо вписывалось в принятое конструктивное решение.

df – диаметр впадин

β – предп-ый угол наклона зуба (β=0 – для прямоз.)

hf – коэф. ножки зуба

x – коэф. смещения

Получаемый модуль округляется до ближайшего большего значения. При необход-сти подогнать знач-е модуля под станд-ное возможен пересмотр угла наклона β, числа

или смещения исх-го контура x. При необх-сти обесп-я зад-го межосевого расст-я m опред-ся на основании