Смекни!
smekni.com

Вертикальные камеры паропрогрева (стр. 3 из 5)

Практический интерес представляет максимальная прочность, получаемая в начальный период пропаривания, т.е. до первого спада. Исследования показали, что в производственных условиях следует внимательно подходить к назначению продолжительности изотермического прогрева, особенно при температурах выше 80°С, так как вместо ожидаемого роста прочности бетона возможно ее понижение. Волнообразное изменение прочности при длительном пропаривании также представляет интерес не только практический, но и теоретический.

Из результатов исследований видно, что изменение прочности образцов при различной продолжительности пропаривания не находится в прямой зависимости от степени гидратации цемента. Об увеличении степени гидратации цемента можно судить по тому, что удельный вес цементного камня уменьшается, а количество выделяющегося гидрата окиси кальция, а также связанной воды непрерывно увеличивается.

Изменение прочности образцов зависит от скорости протекания происходящих в них процессов перекристаллизации, причем фазовый состав цементирующего вещества может иметь в этом случае второстепенное значение. Изменение прочности в данном случае, видимо, можно объяснить тем, что в первые часы пропаривания при 80°С, и особенно при 100С, процесс гидратации протекает очень интенсивно и новообразования возникают в виде чрезвычайно мелкозернистой массы, образуя кристаллический сросток определенной прочности. С увеличением длительности пропаривания сначала за счет роста кристаллов уплотняется и упрочняется первичный сросток, а затем вследствие непрерывно идущей гидратации будут возникать в нем внутренние напряжения, нарушающие целостность сростка и снижающие прочность цементного камня. Вместе с тем продолжающийся процесс гидратации приводит к самозалечиванию образовавшихся трещин и дефектов цементного камня вновь образующимися продуктами гидратации и начинается новый этап в увеличении прочности. Кроме упомянутых процессов идет также перекристаллизация, связанная с укрупнением новообразований и изменением фазового состава новообразований вследствие перехода нестабильных соединений в более стабильные.

Следовательно, прочность цементного камня, определяемая обычными методами, свидетельствует о преобладании структурообразующего или деструктивного процесса на определенном этапе твердения. При этом периоды сброса прочности являются не случайным, а вполне закономерным явлением. Задача же технологов состоит в том, чтобы обеспечить получение максимальной прочности бетона при коротком режиме пропаривания, пока в цементном камне не возникли и стали преобладающими деструктивные процессы, сопровождающиеся сбросом прочности.

Пропаривание интенсифицирует процессы диффузии и перекристаллизации. Однако после достижения некоторого оптимума, зависящего от минералогического состава цемента, увеличение продолжительности пропаривания приводит к консервации указанных процессов. Приращение прочности при этом весьма незначительно.

1.4 Период остывания изделий в камере

За периодом изотермического прогрева следует период понижения температуры в камере. Продолжительность его, так же как и остальных, может быть различной.

На многих заводах сборного железобетона после окончания изотермического выдерживания прекращается подача пара в камеру, и изделие выдерживается в течение 2-3 ч. При этом скорость понижения температуры зависит от степени герметизации камеры и подчас составляет 2–5°С в 1 ч. Следовательно, за 2– 3 ч температура в камере понижается всего на 5–10°С и в случае пропаривания при 80° С. составляет 75–70°С. Далее крышку камеры открывают, и изделие некоторое время выдерживают в теплой камере, потом извлекают из нее и распалубливают. Такой режим охлаждения характерен для агрегатно-поточной схемы производства при пропаривании изделий в вертикальных камерах. Отсюда следует, что охлаждение изделий в основном протекает произвольно и зависит от степени герметизации камеры, а также от температуры в цехе. Для охлаждения изделий по заданному режиму необходим отсос пара и принудительная вентиляция камер.

В период охлаждения бетона после изотермического прогрева в нем происходят следующие процессы. Вследствие того что изделие имеет температуру большую, чем среда камеры, из бетона начинает испаряться вода, поверхность его высыхает и становится светлее. Кроме того, вследствие разности температур в изделии возникают температурные перепады, которые приводят к образованию напряжений. При этом чем массивнее изделие и чем быстрее оно охлаждается, тем, естественно, больше температурные напряжения, которые могут привести к образованию трещин.

Допустимая скорость понижения температуры зависит также и от прочности бетона, полученной к концу изотермического прогрева изделий. Температурные перепады приводят к образованию растягивающих напряжений. Поэтому чем выше прочность бетона, тем большие напряжения он может воспринять без разрушения.

В тех случаях, когда предъявляются повышенные требования к водонепроницаемости и морозостойкости бетона, целесообразно охлаждать изделия путем орошения их водой с постепенным понижением ее температуры до температуры окружающей среды.

Существенно влияют на появление температурных трещин при охлаждении сквозняки. В закрытом помещении без сквозняков температурный перепад 60–70°С может не вызвать образования трещин, в то время как при охлаждении на улице, особенно при ветре, даже при меньшем температурном перепаде возможно их возникновение.

Следовательно, в зависимости от условий последующего остывания величина допустимого температурного перепада должна быть различной.

Если же изделия изготовляют на полигонах, а охлаждаются они на улице, то допустимым следует считать перепад 40°С. Независимо от места, где будут охлаждаться изделия (теплый склад или улица), необходимо, чтобы их со всех сторон омывал более холодный воздух. Одностороннее охлаждение, например, когда изделие находится на теплом полу, а охлаждается сверху, приводит к образованию трещин.


2. Характеристика вертикальной камеры и изделий

Сушильные установки непрерывного действия представляют собой вытянутые (в высоту или в длину в зависимости от удобства размещения в цехе) камеры, внутри которых с помощью конвейеров различных конструкций высушиваемый материал перемещается от загрузочного к разгрузочному концу. Из-за трудности создания надежных конвейерных устройств для транспортировки тяжелых форм и крупных стержней эти сушила применяются только для сушки мелких и средних стержней. Сушила непрерывного действия работают с постоянным во времени тепловым режимом.

Вертикальная камера выполняется в виде башни со стенами рамно-щитовой конструкции. Пространство между внутренним и внешним стальными листами обшивки рам заполняется теплоизоляционным материалом (шлаковой или стеклянной ватой). Внутри сушила движется вертикальный конвейер, состоящий из двух непрерывных роликовых цепей с подвешенными на них этажерками. На полки этажерок укладывают подвергаемые сушке стержни. Количество полок на каждой из этажерок зависит от размера стержней. При массе стержней до 5 кг обычно на этажерке устанавливают по три полки, при сушке более крупных стержней количество полок уменьшается. Изменяя скорость движения конвейера, можно устанавливать различное время пребывания стержней в сушиле в зависимости от их массы. Загрузка стержней производится со стороны восходящей ветви конвейера, разгрузка – с противоположной стороны, причем загрузка и выгрузка обычно механизированы.

Топка сушила находится между двумя ветвями конвейера; размещена выше уровня загрузочного и разгрузочного окон, чтобы предотвратить выбивание горячих дымовых газон. Топливо сжигается в топке, расположенной внутри смесительной камеры, в которой происходит перемешивание выходящих из топки продуктов горения (с температурой 1000–1200° С) с холодным воздухом или отработанными газами. Наружная камера одновременно играет роль тепловой изоляции кладки топки. Приготовленный таким образом сушильный агент выходит из камеры смешения через отверстия в ее своде и поступает в сушильную камеру со стороны восходящей ветви конвейера. Поднявшись в верхнюю часть сушила, дымовые газы огибают перегородку, опускаются в нижнюю часть сушила, откуда дымососом часть их отводится для рециркуляции, а часть поступает в дымовую трубу. Вместо сплошной перегородки часто используются газоотбойные щиты, устанавливаемые над топкой. Меняя угол наклона этих щитов при помощи лебедки, можно регулировать распределение газовых потоков в сушильной камере. Помимо этого, дымовая труба соединена с верхней частью сушильной камеры четырьмя короткими трубопроводами с заслонками на каждом из них. Все эти средства позволяют регулировать работу сушила и подбирать тот режим сушки, который требуется для данных стержней.

Стержни перед выдачей из сушила охлаждаются. Зоной охлаждения служит участок нисходящей ветви конвейера между дымоотборным отверстием и разгрузочным окном. Охлаждение стержней осуществляется воздухом, подсасываемым в сушильную камеру через окно разгрузки.